2019-2020学年福建省厦门市九年级(上)期末数学试卷

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019-2020学年福建省厦门市九年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.(4分)用求根公式计算方程x2﹣3x+2=0的根,公式中b的值为()A.3B.﹣3C.2D.2.(4分)方程(x﹣1)2=0的解是()A.x1=1,x2=﹣1B.x1=x2=1C.x1=x2=﹣1D.x1=1,x2=﹣23.(4分)如图,四边形ABCD的顶点A,B,C在圆上,且边CD与该圆交于点E,AC,BE交于点F.下列角中,弧AE所对的圆周角是()A.∠ADEB.∠AFEC.∠ABED.∠ABC4.(4分)下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.在只装了红色卡片的袋子里,摸出一张白色卡片C.投掷一枚正六面体骰子,朝上一面的点数小于7D.在一副扑克牌中抽出一张,抽出的牌是黑桃65.(4分)如图中的两个梯形成中心对称,点P的对称点是()A.点AB.点BC.点CD.点D6.(4分)抛物线C1向右平移4个单位长度后与抛物线C2重合,若(﹣1,3)在抛物线C1上,则下列点中,一定在抛物线C2上的是()A.(3,3)B.(3,﹣1)C.(﹣1,7)D.(﹣5,3)7.(4分)如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A.已知:在⊙O中,∠AOB=∠COD,弧AB=弧CD.求证:AB=CDB.已知:在⊙O中,∠AOB=∠COD,弧AB=弧BC.求证:AD=BCC.已知:在⊙O中,∠AOB=∠COD.求证:弧AD=弧BC,AD=BCD.已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD8.(4分)一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同.若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到红球的概率为P,则P的值为()A.B.C.或D.或9.(4分)如图,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.关于优弧CAD,下列结论正确的是()A..经过点B和点EB..经过点B,不一定经过点EC..经过点E,不一定经过点BD..不一定经过点B和点E10.(4分)已知二次函数y=ax2+bx+c,当x=2时,该函数取最大值8.设该函数图象与x轴的一个交点的横坐标为x1,若x1>4,则a的取值范围是()A.﹣3<a<﹣1B.﹣2<a<0C.﹣1<a<1D.2<a<4二、填空题(本大题有6小题,每小题4分,共24分)11.(4分)抛物线y=(x﹣1)2+3的对称轴是直线.12.(4分)半径为2的圆中,60°的圆心角所对的弧的弧长为.13.(4分)计算:(+a)=.14.(4分)如图,△ABC内接于圆,点D在弧BC上,记∠BAC﹣∠BCD=α,则图中等于α的角是.15.(4分)某工厂的产品每50件装为一箱,现质检部门对100箱产品进行质量检查,每箱中的次品数见下表:次品数箱数0501142203104452该工厂规定:一箱产品的次品数达到或超过6%,则判定该箱为质量不合格的产品箱.若在这100箱中随机抽取一箱,抽到质量不合格的产品箱概率为.16.(4分)某日6时至10时,某交易平台上一种水果的每千克售价、每千克成本与交易时间之间的关系分别如图1、图2所示(图1、图2中的图象分别是线段和抛物线,其中点P是抛物线的顶点).在这段时间内,出售每千克这种水果收益最大的时刻是,此时每千克的收益是.三、解答题(本大题有9小题,共86分)17.(8分)解方程:x2﹣4x﹣7=0.18.(8分)已知:如图,在ABCD中,对角线AC、BD相交于点O,EF过点O分别交AD、BC于点E、F.求证:OE=OF.19.(8分)已知二次函数y=x2+bx+c的图象经过点A(0,3),B(﹣1,0).(1)求该二次函数的解析式;(2)在图9中画出该函数的图象.20.(8分)如图,在△ABC中,AB=AC.(1)若以点A为圆心的圆与边BC相切于点D,请在图中作出点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若该圆与边AC相交于点E,连接DE,当∠BAC=100°时,求∠AED的度数.21.(8分)梭梭树因其顽强的生命力和防风固沙的作用,被称为“沙漠植被之王”.新疆北部某沙漠2016年有16万亩梭梭树,经过两年的人工种植和自然繁殖,2018年达到25万亩.按这两年的平均增长率,请估计2019年该沙漠梭梭树的面积.22.(8分)如图,在▱ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在▱ABCD的边上,请探究▱ABCD的角和边需要满足的条件.23.(12分)阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表一所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表二所示,依照上述方案,请直接写出分配结果;(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m﹣n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表三,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)表一物品电子词典迷你唱机珍藏版小说所有物品估价总值均分值所得物品估价总值差额表二物品A甲500乙400丙700﹣225+525575350725125011501450350200300550小辉小乐500700BC表三500350500150550250物品所有物品估价总值均分值所得物品估价总值差额DE小红mn小莉m﹣10n+2024.(12分)已知正方形ABCD的边长为2,中心为M,⊙O的半径为r,圆心O在射线BD上运动,⊙O与边CD仅有一个公共点E.(1)如图1,若圆心O在线段MD上,点M在⊙O上,OM=DE,判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,⊙O与边AD交于点F,连接MF,过点M作MF的垂线与边CD交于点G,若r=≤1),设点O与点M之间的距离为x,EG=y,当x>时,求y与x的函数解析式.(DF25.(14分)已知抛物线y=x2﹣2mx+m2+2m﹣2,直线l1:y=x+m,直线l2:y=x+m+b(1)当m=0时,若直线l2经过此抛物线的顶点,求b的值(2)将此抛物线夹在l1与l2之间的部分(含交点)图象记为C,若﹣<b<0,①判断此抛物线的顶点是否在图象C上,并说明理由;②图象C上是否存在这样的两点:M(a1,b1)和N(a2,b2),其中a1≠a2,b1≠b2?若存在,求相应的m和b的取值范围2019-2020学年福建省厦门市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.【解答】解:用求根公式计算方程x2﹣3x+2=0的根,公式中b的值为﹣3,故选:B.2.【解答】解:(x﹣1)2=0,x﹣1=0,x1=x2=1;故选:B.3.【解答】解:弧AE所对的圆周角为∠ABE和∠ACE.故选:C.4.【解答】解:A、画一个三角形,其内角和是180°,是必然事件;B、在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件;C、投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件;D、在一副扑克牌中抽出一张,抽出的牌是黑桃6,属于随机事件;故选:D.5.【解答】解:根据中心对称的性质:图中的两个梯形成中心对称,点P的对称点是点C.故选:C.6.【解答】解:∵抛物线C1向右平移4个单位长度后与抛物线C2重合,(﹣1,3)在抛物线C1上,∴当(﹣1,3)向右平移4个单位时,得到(3,3),故(3,3)一定在抛物线C2上.故选:A.7.【解答】解:命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,已知:在⊙O中,∠AOB=∠COD.求证:弧AB=弧CD,AB=CD,故选:D.8.【解答】解:由题意可得,这个袋子中有三个球,可能是一红两白,也可能是两红一白,当袋子中的球是一红两白时,p=当袋子中的球是两红一白时,p=故选:D.,,9.【解答】解:∵AD⊥BC,AC=DC,∴AF=DF,∵BF=BF,∠AFB=∠BFD,∴△AFB≌△DFB(SAS),∴AB=DB,∵BC=BC,∴△BAC≌△BDC(SSS),∴∠BAC=∠BDC=90°,∴A,C,D,B在以BC的中点为圆心,∵AE≠BC,∴优弧CAD经过点B,不一定经过点E,故选:B.10.【解答】解:∵二次函数y=ax2+bx+c,当x=2时,该函数取最大值8,∴a<0,该函数解析式可以写成y=a(x﹣2)2+8,∵设该函数图象与x轴的一个交点的横坐标为x1,x1>4,∴当x=4时,y>0,即a(4﹣2)2+8>0,解得,a>﹣2,∴a的取值范围时﹣2<a<0,故选:B.二、填空题(本大题有6小题,每小题4分,共24分)11.【解答】解:∵y=(x﹣1)2+3∴其对称轴为x=1故填空答案:x=1.12.【解答】解:l===π.为半径的圆上,故答案为π.•13.【解答】解:原式===1.故答案为:1.•14.【解答】解:∵∠BAD=∠BCD,∠BAC﹣∠BCD=α,∴∠BAC﹣∠BAD=∠DAC=α,∴图中等于α的角是∠DAC,故答案为:∠DAC.15.【解答】解:50×6%=3(件),若在这100箱中随机抽取一箱,抽到质量不合格的产品箱概率为(10+4+2)÷100=故答案为:..16.【解答】解:设图1中交易时间y1与每千克售价x1的函数关系式为:y1=kx1+b,将(5,10)(6,8)代入解得k=﹣2,b=20,所以y1=﹣2x1+20设每千克成本y2与交易时间x2的函数关系式为:y2=a(x2﹣10)2+3将(6,7)代入,解得a=所以y2==(x2﹣10)2+3x22﹣5x2+28设在这段时间内,出售每千克这种水果的收益为w元,根据题意,得y2==x22﹣5x2+28(﹣2x1+20)2﹣5(﹣2x1+20)+28=x12﹣10x+28w=x1﹣y2=x1﹣(x12﹣10x+28)=﹣x12+11x1﹣28=﹣(x1﹣当x1=)2+时,y1=﹣11+20=9,.w取得最大值,最大值为答:在这段时间内,出售每千克这种水果收益最大的时刻为9时,此时每千克的收益是故答案为:9时,元.元.三、解答题(本大题有9小题,共86分)17.【解答】解:移项得:x2﹣4x=7,配方得:x2﹣4x+4=7+4,即(x﹣2)2=11,开方得:x﹣2=±,,x2=2﹣.∴原方程的解是:x1=2+18.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠EAO=∠FCO,∠AEO=∠CFO,在△AOE和△COF中,,∴△AEO≌△CFO(AAS),∴OE=OF.19.【解答】解:(1)∵二次函数y=x2+bx+c的图象经过点A(0,3),B(﹣1,0).∴,解得:,∴二次函数的解析式为y=x2+4x+3.(2)由y=x2+4x+3=(x+2)2﹣1,列表得:xy﹣43﹣30﹣2﹣1﹣1003如图即为该函数的图象:20.【解答】解:(1)如图,点D即为所求.(2)如图,∵BC是⊙O的切线,∴AD⊥BC,∵AB=

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功