2021年河北中考数学试题分析1、命题模式突破,强调实战能力今年的中考数学试卷改革力度较大,打破了多年的命题模式。整套试卷“起点低,坡度缓,尾巴翘”。试题覆盖面广,内容新颖,较好的落实了“狠抓基础,渗透思想,突出能力,着重创新”新课改的理念。2、以夯实基础为出发点基本题以常规题型为主,采用了直接考查数与式的运算、有理数大小的比较、二次根式的意义、函数的图像与性质、正方体的展开与折叠、圆的有关知识,方差的特征量、统计与概率等的基本知识。这类试题的特点,起点低,考查的知识相对单一,内容大都来源于课本,是对教材内容的深入考查,学生很容易上手并正确解答。如1-8题、13-15题、19-21题,都能在课本上找到源头,这对中学数学教学有良好的导向作用。3、专项试题突出能力今年试题设计精心,立意凸现了对中学数学的通性通法的重点考查。如:第14、17题体现了转化的思想,第18题考查了特殊到一般的归纳思想,第19、22题考查了方程思想,第12、20题考查了数形结合的思想,第11、24题考查了函数思想,第25、26题用运动变化中特殊数量关系寻找的研究,这使得整套试卷突出能力立意,为初中数学教学指明了方向。4、“多思少算”命题新倾向今年开放性、探究性试题的设置分布广泛,通过设置操作、观察、探究、应用等方面的问题,给学生提供了一定的思考研究空间。如第17题留给学生的思考空间较大,虽然其中一个图形处于运动状态,但是通过转化,使阴影部分的周长形成规律,巧妙解题。第25题以学生熟悉的平行线为原型,通过扇形的改变和运动,形成一个探究性题目,图形的设置减少了文字量,降低了对学生文字阅读能力的要求。题目发掘并串联了点与直线的距离、直线与圆的位置关系、三角函数等重要内容,侧重考查了运动变化中的不变量问题、解直角三角形问题、垂径定理和圆心角问题,本题带有浓郁的探究成分,要求学生善于对新情景、新信息进行有效的加工和整合,完成本题要求学生有较好的现场学习、迁移和应用的能力,这类试题多有较好的区分度和可推广性。今年的数学试题新颖,部分试题思维含量较高,要求直接写出结果,不少题要求“多思少算”,避免繁琐的计算和证明,使学生有足够的时间和精力进行数学思考,如:23题第4问、25题思考和探究统一、26题第3问都体现了这一点。4、压轴题突破命题模式试卷从21题——26题都不同往年的模式,21题由统计改为概率,22题为分式方程和不等式综合应用,23题第一次考查了尺规作图,24题将一次函数和统计结合,25题为圆的探究题,尤其是第26题将二次函数与几何图形综合命题,是新课改以来首次命题模式,本题设置了三个耐人寻味的问题,其中,第三问具有较强的选拔功能。本题既关注到初、高中思维方式的衔接,又考查了学生综合运用数学知识、数学思维方法解决问题的能力。河北省2021年中考数学试卷一、选择题(1-6小题每小题2分,7-12小题,每题3分)1、(2021•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。专题:计算题。分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(2021•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。专题:计算题。分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(2021•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。专题:因式分解。分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(2021•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。专题:计算题。分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(2021•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。专题:存在型;数形结合。分析:先判断出一次函数y=6x+1中k的符号,再根据一次函数的性质进行解答即可.解答:解:∵一次函数y=6x+1中k=6>0,b=1>0,∴此函数经过一、二、三象限,故选D.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b>0时,函数图象与y轴正半轴相交.6、(2021•河北)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A、面CDHEB、面BCEFC、面ABFG考点:展开图折叠成几何体。专题:几何图形问题。D、面ADHG分析:由平面图形的折叠及正方体的展开图解题.注意找准红心“”标志所在的相邻面.解答:解:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE.故选A.点评:本题考查了正方体的展开图形,解题关键是从相邻面入手进行分析及解答问题.7、(2021•河北)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S团中选择一个,则他应选()A、甲团B、乙团考点:方差。专题:应用题。乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个D、甲或乙团C、丙团分析:由S甲2=27,S乙2=19.6,S丙2=1.6,得到丙的方差最小,根据方差的意义得到丙旅行团的游客年龄的波动最小.解答:解:∵S甲2=27,S乙2=19.6,S丙2=1.6,∴S甲2>S乙2>S丙2,∴丙旅行团的游客年龄的波动最小,年龄最相近.故选C.点评:本题考查了方差的意义:方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定.8、(2021•河北)一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是()A、1米B、5米C、6米D、7米考点:二次函数的应用。专题:计算题。分析:首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=﹣5(t﹣1)2+6的顶点坐标即可.解答:解:∵高度h和飞行时间t满足函数关系式:h=﹣5(t﹣1)2+6,∴当t=1时,小球距离地面高度最大,∴h=﹣5×(1﹣1)2+6=6米,故选C.点评:解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果,二次函数2b4acb,y=ax2+bx+c的顶点坐标是,当x等于﹣4a2a4acb2时,y的最大值(或最小值)是.4a9、(2021•河北)如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A、B、2C、3D、4考点:相似三角形的判定与性质;翻折变换(折叠问题)。专题:计算题。分析:△ABC沿DE折叠,使点A落在点A′处,可得∠EDA=∠EDA′=90°,AE=A′E,所以,△ACB∽△AED,A′为CE的中点,所以,可运用相似三角形的性质求得.解答:解:∵△ABC沿DE折叠,使点A落在点A′处,∴∠EDA=∠EDA′=90°,AE=A′E,∴△ACB∽△AED,又A′为CE的中点,∴,即,∴ED=2.故选B.点评:本题考查了翻折变换和相似三角形的判定与性质,翻折变换后的图形全等及两三角形相似,各边之比就是相似比.10、(2021•河北)已知三角形三边长分别为2,x,13,若x为正整数则这样的三角形个数为()A、2B、3C、5D、13考点:三角形三边关系。专题:计算题。分析:根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;解答即可;解答:解:由题意可得,,解得,11<x<15,所以,x为12、13、14;故选B.点评:本题考查了三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边;牢记三角形的三边关系定理是解答的关键.11、(2021•河北)如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A、考点:一次函数综合题;正比例函数的定义。专题:数形结合。分析:从y-B、C、D、xx等于该圆的周长,即列方程式y-x,再得到关于y的一次函数,从而得到函数图象的222xx即y(+1)x,所以该函数的图象大约为A中函数的形式.222大体形状.解答:解:由题意y-故选A.点评:本题考查了一次函数的综合运用,从y﹣等于该圆的周长,从而得到关系式,即解得.12、(2021•河北)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,②△OPQ的面积为定值.③x>0时,y随x的增大而增大.MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()A、①②④B、②④⑤C、③④⑤D、②③⑤考点:反比例函数综合题;反比例函数的性质;反比例函数图象上点的坐标特征;三角形的面积。专题:推理填空题。分析:根据题意得到当x<0时,y=﹣,当x>0时,y=,设P(a,b),Q(c,d),求出ab=﹣2,cd=4,求出△OPQ的面积是3;x>0时,y随x的增大而减小;由ab=﹣2,cd=4得到MQ=2PM;因为∠POQ=90°也行,根据结论即可判断答案.解答:解:①、x<0,y=﹣,∴①错误;②、当x<0时,y=﹣,当x>0时,y=,设P(a,b),Q(c,d),则ab=﹣2,cd=4,∴△OPQ的面积是(﹣a)b+cd=3,∴②正确;③、x>0时,y随x的增大而减小,∴③错误;④、∵ab=﹣2,cd=4,∴④正确;⑤、因为∠POQ=90°也行,∴⑤正确;正确的有②④⑤,故选B.点评:本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能根据这些性质进行说理是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)13、(2021•河北),π,﹣4,0这四个数中,最大的数是π.考点:实数大小比较。专题:计算题。分析:先把各式进行化简,再根据比较实数大小的方法进行比较即可.解答:解:∵1<<2,π=3.14,﹣4,0这四个数中,正数大于一切负数,∴这四个数的大小顺序是π故答案为:π点评:此题主要考查了实数的大小的比较.注意两个无理数的比较方法:根据开方的性质,把根号内的移到根