2019-2020学年广东省广州市天河区九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.“明天是晴天”这个事件是()A.确定事件B.不可能事件C.必然事件D.不确定事件2.下列选项的图形是中心对称图形的是()A.3.若函数y=A.m>﹣3B.C.D.的图象在第一、三象限内,则m的取值范围是()B.m<﹣3C.m>3D.m<34.已知⊙O的半径为6,点A与点O的距离为5,则点A与⊙O的位置关系是()A.点A在圆外B.点A在圆内C.点A在圆上D.不确定5.已知x=﹣1是一元二次方程x2+mx+3=0的一个解,则m的值是()A.4B.﹣4C.﹣3D.36.关于抛物线y=x2+6x﹣8,下列选项结论正确的是()A.开口向下B.抛物线过点(0,8)C.抛物线与x轴有两个交点D.对称轴是直线x=37.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,OD=3,则AB的长为()A.8B.6C.4D.38.已知点(﹣4,y1)、(4,y2)都在函数y=x2﹣4x+5的图象上,则y1、y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定9.设a,b是方程x2+2x﹣20=0的两个实数根,则a2+3a+b的值为()A.﹣18B.21C.﹣20D.1810.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()第1页(共15页)A.1:4B.1:5C.2:D.1:二、填空题(共6小题,每小题3分,满分18分)11.在直角坐标系中,点A(1,﹣2)关于原点对称的点的坐标是.12.若扇形的半径为3,圆心角120°,为则此扇形的弧长是.13.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和4个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为.14.如图,已知A(5,0),B(4,4),以OA、AB为边作OABC,若一个反比例函数的图象经过C点,则这个函数的解析式为.15.如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=.16.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为.三、解答题(共9小题,满分0分)17.解方程:x+3=x(x+3)18.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点逆时针旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.求证:EF=BC.第2页(共15页)19.正比例函数y=2x与反比例函数y=的图象有一个交点的纵坐标为4.(1)求m的值;(2)请结合图象求关于x的不等式2x≤的解集.20.根据广州市垃圾分类标准,将垃圾分为“厨余垃圾、可回收垃圾、有害垃圾、其它垃圾”四类.小明将分好类的两袋垃圾准确地投递到小区的分类垃圾桶里.请用列举法求小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率.21.已知在△ABC中,∠A=∠B=30°.(1)尺规作图:在线段AB上找一点O,以O为圆心作圆,使⊙O经过A,C两点;(2)在(1)中所作的图中,求证:BC是⊙O的切线.22.2019年非洲猪瘟疫情暴发后,猪肉价格不断走高,据统计:2019年9月20日猪肉价格比年初上涨了60%,上涨后购买1千克猪肉需要80元.(1)填空:年初的猪肉价格是每千克元;(2)某超市将进货价为每千克65元的猪肉,按80元价格出售,平均一天能销售100千克;经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且让顾客尽可能得到实惠,猪肉的售价应该下降多少元?23.如图,已知抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,分别与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求b的值;(2)若将线段BC绕点C顺时针旋转90°得到线段CD,问:点D在该抛物线上吗?请说明理由.第3页(共15页)24.已知抛物线y=x2﹣2ax+m.(1)当a=2,m=﹣5时,求抛物线的最值;(2)当a=2时,若该抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m=0时,平行于y轴的直线l分别与直线y=x﹣(a﹣1)和该抛物线交于P,Q两点.若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围.25.已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.第4页(共15页)2019-2020学年广东省广州市天河区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【解答】解:“明天是晴天”这个事件是随机事件,属于不确定事件,故选:D.2.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.3.【解答】解:根据题意得m﹣3>0,解得m>3.故选:C.4.【解答】解:∵OA<R,∴点A在圆内,故选:B.5.【解答】解:把x=﹣1代入x2+mx+3=0得1﹣m+3=0,解得m=4.故选:A.6.【解答】解:A、抛物线y=x2+6x﹣8中a=1>,则抛物线开口方向向上,故本选项不符合题意.B、x=0时,y=﹣,抛物线与y轴交点坐标为(0,﹣8),故本选项不符合题意.C、△=62﹣4×1×8>0,抛物线与x轴有两个交点,本选项符合题意.D、抛物线y=x2+6x﹣8=(x+3)2﹣17,则该抛物线的对称轴是直线x=﹣3,故本选项不符合题意.故选:C.7.【解答】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD===4,第5页(共15页)∴AB=2BD=8.故选:A.8.【解答】解:∵二次函数y=x2﹣4x+5=(x﹣2)2+1,∴对称轴为x=2,∵a>0,∴x>2时,y随x增大而增大,点(﹣4,y1)关于抛物线的对称轴x=2对称的点是(8,y1),∴y1>y2,故选:B.9.【解答】解:∵a,b是方程x2+2x﹣20=0的两个实数根,∴a2+2a=20,a+b=﹣2,∴a2+3a+b=a2+2a+a+b=20﹣2=18则a2+3a+b的值为18.故选:D.10.【解答】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,第6页(共15页)∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=∴P'B=PB=x,,=x,PB,∴P′A:P′B=2:故选:C.二、填空题(共6小题,每小题3分,满分18分)11.【解答】解:根据关于原点对称的点的坐标的特点,∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2).故答案为:(﹣1,2).12.【解答】解:∵扇形的半径为3,圆心角为120°,∴此扇形的弧长=故答案为:2π13.【解答】解:由题意可得,解得,a=16.故答案为:16.14.【解答】解:∵A(5,0),B(4,4),以OA、AB为边作OABC,第7页(共15页)=2π.×100%=20%,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.15.【解答】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案为35°.16.【解答】解:∵抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣∴﹣9=22﹣4×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴抛物线为y=x2﹣4x﹣5,直线y=2x﹣13,∴x2﹣4x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=4,故答案为:x1=2,x2=4.三、解答题(共9小题,满分0分)17.【解答】解:方程移项得:(x+3)﹣x(x+3)=0,分解因式得:(x+3)(1﹣x)=0,解得:x1=1,x2=﹣3.18.【解答】证明:∵∠CAF=∠BAE,∴∠BAC=∠EAF,∵将线段AC绕A点旋转到AF的位置,∴AC=AF,在△ABC与△AEF中,第8页(共15页)9),,∴△ABC≌△AEF(SAS),∴EF=BC;19.【解答】解:(1)当y=4时,2x=4,解得x=2,则正比例函数y=2x与反比例函数y=的图象的一个交点坐标为(2,4),把(2,4)代入y=得m=2×4=8;(2)∵正比例函数y=2x与反比例函数y=的图象有一个交点坐标为(2,4),∴正比例函数y=2x与反比例函数y=的图的另一个交点坐标为(﹣2,﹣4),如图,当x≤﹣2或0<x≤2时,2x≤,∴关于x的不等式2x≤的解集为x≤﹣2或0<x≤2.20.【解答】解:分别记厨余垃圾、可回收垃圾、有害垃圾、其它垃圾为A、B、C、D,画树状图如下:由树状图知,共有12种等可能结果,其中小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的结果有2种,所以小明投放的两袋垃圾是“厨余垃圾和有害垃圾”的概率为21.【解答】(1)解:如图,⊙O即为所求.=.第9页(共15页)(2)证明:连接OC.∵∠A=∠B=30°,∴∠ACB=180°﹣30°﹣30°=120°,∵MN垂直平分相对AC,∴OA=OC,∴∠A=∠ACO=30°,∴∠OCB=90°,∴OC⊥BC,∴BC是⊙O的切线.22.【解答】解:(1)设今年年初猪肉的价格为每千克x元,依题意,得:(1+60%)x=80,解得:x=50.答:今年年初猪肉的价格为每千克50元.故答案是:50;(2)设猪肉的售价应该下降y元,则每日可售出(100+10y)千克,依题意,得:(80﹣65﹣y)(100+10y)=1560,整理,得:y2﹣5y+6=0,解得:y1=2,y2=3.∵让顾客得到实惠,∴y=3.答:猪肉的售价应该下降3元.23.【解答】解:(1)∵抛物线y=﹣x2+bx+3的对称轴为直线x=﹣1,∴﹣∴b=﹣2;第10页(共15页)=﹣1,(2)当x=0时,y=3,因此点C(0,3),即OC=3,当y=0时,即﹣x2+bx+3=0,解得x1=﹣3,x2=1,因此OB=1,OA=3,如图,过点D作DE⊥y轴,垂足为E,由旋转得,CB=CD,∠BCD=90°,∵∠OBC+∠BCO=90°=∠BCO+∠ECD,∴∠OBC=∠ECD,∴△BOC≌△CDE(AAS),∴OB=CE=1,OC=DE=3,∴D(﹣3,2)当x=﹣3时,y=﹣9+6+3=0≠2,∴点D不在该抛物线上.24.【解答】解:(1)当a=2,m=﹣5时,y=x2﹣4x﹣5=(x﹣2)2﹣9所以抛物线的最小值为﹣9.(2)当a=2时,y=x2﹣4x+m=(x﹣2)2+m﹣4因为该抛物线与坐标轴有两个交点,所以△>0,即16﹣4m>0,解得m<4,m﹣4>﹣9,解得m>﹣5∴﹣5<m<4∵把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,∴y=x2﹣4x+m+k第11页(共15页)此时△<