20081管道技术与设备PipelineTechniqueandEquipment2008No1:(50676109):2007-04-09:2007-08-28陈振瑜,王海琴,李志彪,何利民(,257061):在内径50mm长273m的水平管上利用空气-水作试验介质对段塞流的压力和液塞持液率进行了试验研究采用压力传感器测量压力变化,采用平行电导探针测量液塞持液率变化通过试验发现:液塞通过测量点时持液率的变化比压力变化迅速,持液率能更真实地反映段塞流动特性,可以用持液率的波动情况来确定液塞频率将液塞持液率模型预测值与试验值进行了比较,结果表明,水平管大多数试验工况下的ZhangHQ模型预测值与试验值吻合最好:段塞流;液塞持液率;模型:O359:A:1004-9614(2008)01-0005-03ExperimentalStudyandComparisonbetweenPredictionModelsoftheSlugLiquidHoldupforSlugFlowinHorizontalPipeCHENZhenyu,WANGHaiqin,LIZhibiao,HELimin(CollegeofStorage&TransportationEngineering,UniversityofPetroleum,Dongying257061,China)Abstract:Theexperimentsarecarriedona273mlonghorizontalpipewith.id.=50mmusingairwaterasthemedia.Thepressuresignalismeasuredwithapressuretransducer,theliquidslugholdupsignalmeasuredwithaparallelelectronicconductanceprobe.Itisfoundthroughtheexperimentsthattheliquidholdupvariesmuchfasterthanthepressurewhentheliquidslugpassesthemeasurementpoint.Theliquidslugholdupsignalcanresponsestotheinnerflowcharacteristicsofslugflowmoreactually,sothefluctuationoftheliquidholdupinslugflowcanbeusedtodeterminethefrequencyoftheliquidsluginslugflow.ThepredicedvaluesofseveralmodelshavebeencomparedwithexperimentaldataonslugflowsandinmostcasesthepredicedvalueofZhangHQmodelsinbestagreementwithexperimentaldatainhorizontalpipe.Keywords:slugflow;liquidslugholdup;model0,,,[1-4][5-7][8-9],GregoryGA[10],,,,GomezLE[11],,BarneaD[12-13],,SpeddingPL[14]-67ChenXT[15]ZhangHQ[16],1[16]BarneaD[12],,,,,,,[17]db,Es=6A(1-HLs)ls/db(1):,N/m;A,m2;HLs;ls,m.,T=32Lv2r(2):L,kg/m3;vr,m/s.6PipelineTechniqueandEquipmentJan2008ET=32Lv2rAlsHLs(3)[15]:v*=!wL(4)!w!w=fw2sv2m=d4dpdzs(5):d,m;fw;dpdzs;vm;svm=vSL+vSG(6)vSLvSG,m/s.s=LHLs+G(1-HLs)(7)G,kg/m3.[18]:dpdzsm=dpdzs+dpdzm(8)[19]dpdzm=LHLf(vt-vf)(vm-vf)ls(9):HLf;vt,m/s;vf,m/s.(10):ET=32d4LHLf(vt-vf)(vm-vf)ls+fw2sv2mAlsHLs(10)ET=CeEsg(11)34fwsv2m+12dLHLf(vt-vf)(vm-vf)ls!AlsHLs=Ce6db(1-HLs)(12)Ce∀[19]:Ce=25-|sin∀|2(13)[12]ls=(32cos2∀+16sin2∀)d(14),[20]:dc=204(L-G)g1/2(15):g,m/s2;dc,,,(16):HLs=11+!sm316(L-G)g1/2(16)!sm=12Cefwsv2m+LdHLf(vt-vf)(vm-vf)2ls(17)HLs,HLfvf,(18)[21]:HLf=vt-vmvt(18)vf=vt-HLs(vt-vm)HLf(19)(20)[6,22]:vt=115349vm+190861(20)fw(21):fw=00056+05Re032s(21)Res=dvms#s(22)#s(stress)GregoryGA[10]:HLs=11+(vm/866)139(23)(16)250mm273m,11(5kHz)1m50mm,2,PCI-6017E(125MHz);Soltron3595-1H33112vSL=0846m/svSG=1321m/s,,;,,,;,,,,,1AB,,,(A),,(B),1:71232(1)GregoryGA[10],vm,(23)(2)MalnesD[23]HLs=vmC+vm,C=83(g!/L)025(24)(3)Majeed[24]:HLs=(1009-C1vm)A(25):C1=0006+13377#G/#L,#G,#L∀∀0,A=10;∀0,A=10-sin∀.34,vSL0836m/s0566m/s.,,,,MalnesDMajeed,ZhangHQGregoryGA,ZhangHQ3vSL=0836m/s,,ZhangHQ,GregoryGA,MalnesDMajeed4,4vSL=0566m/s,,,ZhangHQ:[1],..,2002,22(7):134-139.[2],,./.,2005,26(3):441-446.[3],,.-.,2002,22(3):22-26.[4],,,..,2004(5):4-7.[5],,..,2003,54(2):192-198.[6],,..,2003,23(12):189-193.[7],..(),2003,27(1):67-71.[8],..,2003,23(1):20-25.[9],,,..,2003,37(9):966-970.[10]GREGORYGA,NICHOLSONMK,AZIZK.Correlationoftheliquidvolumefractionintheslugforhorizontalgasliquidslugflow.Int.J.MultiphaseFlow,1978,4(1):33-39.[11]GOMEZLE,SHOHAMO,TAITELY.Predictionofslugliquidholdup:horizontaltoupwardverticalflow.Int.J.MultiphaseFlow,2000,26:517-521.[12]BARNEAD,BRAUNERN.Holdupoftheliquidslugintwophaseintermittentflow.Int.J.MultiphaseFlow,1985,11(1):43-49.[13]BARNEAD.Aunifiedmodelforpredictingflowpatterntransitionsforthewholerangeofpipeinclinations.Int.J.MultiphaseFlow,1987,13:1-12.[14]SPEDDINGPL,CHENJJJ.Predictionofholdupintwophasegasliquiddownwardinclinedflow.Int.J.Eng.FluidMech.,1992.[15]CHENXT,CAIXD,BRILLJP.Ageneralmodelfortransitiontodispersedbubbleflow.Chem.Eng.Sc.i,1997,52:4373-4380.[16]ZhangHongquan,WangQian,SARICAC,etal.Aunifiedmechanisticmodelforslugliquidholdupandtransitionbetweensluganddispersedbubbleflows.Int.J.ofMultiphaseFlow,2003,29:97-107.(下转第19页)1:19;,,,7,,,(1),,,,,(2),,,,,(3),,,,(4)HCA,:[1]..,2006(5):4-6.[2]..,2006,24(1):9-14.[3]LEEWISK.GRI#00/0189AModelforSizingHighConsequenceAreasAssociatedwithNaturalGasPipelinesDecemobe,l2001.[4],..,2006,25(9):1-60.[5]LEEDSJM,WATERTONM.CorrelatingCoatingandMetalLossDataCanSaveO&MMoney.Pipeline&GasIndustry,1999.[6]MARTYM.NewAPIStandardtoPromoteIntegrityforLiquidPipeline.Pipeline&GasIndustry,2001.[7]ASMEB31.GManualforDeterminingtheRemainingStrengthofCorrodedPipelinesCRTD,Vo.l40.1,RiskBasedinServiceTestingGuidelines.[8]API1160ManagingSystemIntegrityforHazardousLiquidPipelines,2001.[9]BS7910#1999GuideonMethodsforAssessingtheAcceptabilityofFlawsinMetallicStructures.:(1982#),,(上接第7页)[17]ADAMSONAW.PhysicalChemistryofSurfaces.5thed.JohnWilley&SonsInc.,1990.[18]KOKALSL,STANISLAVJF.AnexperimentalstudyoftwophaseflowinslightlyinclinedpipesII:liquidholdupandpressuredrop.Chem.Eng.Sc.i,1989,44:681-693.[19]ZHANGHQ,JAYAWARDENASS,REDUSCL,etal.Slugdynamicsingasliquidpipeflow.J.EnergyRes.Techno.l,2000,122:14-21.[20]BARNEAD,SHOHAMO,TAITELY.Flowpatterntransitionforverticaldownwardtwophaseflow.Chem.Eng.Sc.i,1982,37:741-744.[21]COOKM,BEHNIAM.Sluglengthpredictioninnearhorizontalgasliquidintermittentflow.Chem.Eng.Sc.i,2000,55(11):2009-2018.[22]NIC