40220112··:1002-025X(2011)02-0012-04HAZ1,1,1,1,1,2(1.,710048;2.,721008):、,。,,,,,,。,,,;,,,。:;;;:TG453.9:B:2010-09-14::(00k904);(00X901)0,[1]。,,,CT55CT90,483MPa689MPa,203.9GPa,,CT110[2]。,,16Cr、,[3-6]。、,、、、、、[7-11]。20096CT80,。,,(HAZ),,HAZ,,。11.1,,。,,。,,。1.2。1。1,2,3。(ωH)、(Tm)、12WeldingTechnologyVol.40No.2Feb.2011(tH)、(t8/5)。22.11,+。2,,,,,,,,[12-13]。2a,,,,,、ε-,,,,。()2b,,,,“”,,,,,“”,。2c,,,,。、,。2d,,,,,。,,,,,,。,,3a,“”,,,,,3b,,··11()(%)CSiMnPSFe0.1~0.20.2~0.40.7~1.0≤0.02≤0.02≤1.52AKV/JReL/MPaRm/MPaA(%)CT80≥25≥520≥650≥243HAZE/(kJ·cm-1)ωH/(℃·s-1)Tm/℃t8/5/stH/s(840℃)3.9613013001883.96959501853.96858501823.9665650—020μm2(a)(b)(c)(d)20μm20μm20μm20μm1340220112··,3c。2.2,,4。,,。,,HAZ。,,2,,,,;,。,,,,;,,,,。2.3,,5。5a,,,,,,,;5b,,。5c5d,,,2,,,。2.4,,,,,t8/5,,。,,3HAZ(c)(a)(b)432302826242220/℃/JERW600700800900130014001200110010005HAZ(a)(b)(c)(d)14WeldingTechnologyVol.40No.2Feb.2011,。HAZ,,HAZ,,,4。2.5,4,6,4,,,,,,,。3(1),,,,,,,,。(2),,,,,。(3),,,,。(4)4,,,,,,。:[1].[J].,,.:.[2],.[J].,2007,35(6):85-86.[3].[J].,2006,34(1):1-6.[4],.[J].,1995,6(3):22-33.[5]RoertM.DownholeCTtools,akeytothefuture[R].SPE46041,1998.[6]JonesRD.Developingcoiled-tubingtechniquesontheKarachaganakfield,Kazakhstan[R].SPE68349,2001.[7]CooperRE.Coiledtubinginhorizontalwells[R].SPE17581,1988.[8]StevenD.ProductionapplicationofCTgrowing[J].AmericanOil&GasReporter,1994(1):79.[9]Craigsh.Amulti-wellreviewofcoiledtubingforcematching[R].SPE81715,2003.[10]CrabtreeAR,GavinW.Coiledtubinginsourenvironments-theoryandpractice[R].SPE89614,2004.[11]BurgosR,AllcornM,MallalieuR,etal.Eliminatingthehumanerrorduringcoiled-tubingoperations[R].SPE100164,2006.[12]SawaiT,ShibaKandHishinumaA.Microstructureofweldedandthermal-agedlowactivationsteelF82HIEAheat[J].JournalofNuclearMaterials,2000,283-287(1):657-661.[13]XuejunJia,DaiY.MicrostructureandmechanicalpropertiesofF82HweldmetalirradiatedinSINQtarget-3[J].JournalofNuclearMaterials,2004,329-333(1):309-313.··:(1967—),,,,、,70.4Tm/℃ReL/MPaRm/MPaA(%)Z(%)650579.89701.8515.552.85850622.51709.1517.557.60950525.79713.8617.551.601300593.1709.8812.561.1530027024021018015012090HAZ/mmHV0.51300950850650-3-2-1012346HAZ41540220112·、·ThermalsimulationanalysisofHAZmicrostructureandpropertiesofcoiledtubingweldingbyhighfrequencyresistanceweldingZHANGMin1,ZHAOPeng-kang1,WANGWen-wu1,LIJi-hong1,BIZong-yue1,2(1.SchoolofMaterialScienceandEngineering,Xi’anUniversityofTechnology,Xi’an710048,Shaanxipro.,China;2.BaojiPetroleumSteelPipeCo.,Ltd.,Baoji721008,Shaanxipro.,China)P12-15Abstract:Bymeansofthermalsimulationtechnique,microscopicanalysismethodandmacromechanicalpropertytesting,themicrostructureandmechanicalpropertiesatdifferentlocationswithinheat-affectedzone(HAZ)ofthejointduringthehighfrequencyresistanceweldingofgranularbainitesteelforcoiledtubingweldingwasanalyzed.Atthesametime,comparedwiththemicrostructureandmechanicalpropertiesofbasematerial,theresultsshowedthatwithintheheat-affectedzoneofthejoint,theoverheatedcoarsegrainzonewasmainlycomposedofstripferritemicrostructure,fracturesurfacewasmainlycomposedofuniformdimple,whichwerebroadanddeep,withbettertoughnessandrelativelyhigherimpactenergyvalue.Thenormalizedandnotfullynormalizedareasweremainlycomposedofpolygonalferrite,thegrainboundarybetweengrainswasclear,fracturesurfacewasmainlyquasi-cleavagefracture,andtheimpactenergywasrelativelylow.Therewasnoobviousphasechangeinthetemperingarea,thegrainsizewasslightlyincreasedcomparedwiththatofthebasematerial,andoftemperzonewasincreasedslightlythanthebasematerial,recoveryandre-crystallizationwasgeneratedinthemicrostructure,andthematerialimpactenergyvaluesrisedslightly.Keywords:coiledtubing,granularbainiticsteel,thermalsimulationtechnique,highfrequencyresistanceweldingInfluenceofgradientlayeronthesolderedjointstrengthofYG6hardalloyand40CrsteelSHAHong-wei1,CHENJian2,LIUXue-piao2,LIANGHuan2(1.ZhangjiagangChangliMachineryCo.,Ltd.,Zhangjiagang215621,Jiangsupro.,China;2.SchoolofMaterialScience,JiangsuUniversityofScienceandTechnology,Zhenjiang212003,Jiangsupro.,China)P16-19Abstract:Thegradientlayerwhichpreparedbypowderlaminationmethodwasusedastheinterlayermaterialtorelievetheresidualstressofthejoint.Thesolderteston40CrsteelandYG6hardalloywasconductedundertheconditionthatbrazingtemperaturewas1040℃andtimedurationwas15min.byselectingCuMnNibrazingfillermetal.Theresultsshowedthattheinternalstressoftheweldingjointwouldbereducedobviouslywhileitsstrengthwasincreasedsignificantlybyusinggradientlayerastheinterlayermaterialtorelievetheresidualstress.Thejointstrengthwasupto656MPawhengradientlayerBwasused.Thenumberofgradientlayershadobviouseffectonthestrengthofsolderedjoints.Undertheconditionthatthethicknessofthegradientlayerwasthesame,themorethenumberofthelayers,thehighertheabilitytorelievetheinternalstress,andthehigherthejointstrength.Keywords:YG6hardalloy,40Crsteel,vacuumbrazing,strength,gradientlayer,residualstressWeldingconstructiontechnologyof5083aluminumalloyforroofweldingofLNGfullcontainmenttankWANGXiao-Jun1,2,WUJian-ying2,XUEZhou3,LIFen-kun3(1.StateKeyLaboratoryofGansuAdvancedNon-FerrousMetalM