46220093VACUUMVol.46,No.2Mar.20092008-06-121962。1112,2(1.510640;2.528000)、、、、、。、。FLUENT。、、、。、、。。TQ051.7B1002-0322200902-0049-04Numericalanalysisofgas-liquidtwo-phaseflowinliquid-ringvacuumpumpHUANGSi1,RUANZhi-yong1,DENGQing-jian1,WUTai-zhong2,TANZi-hua2(1.CollegeofMechanicalandVehicleEngineering,SouthChinaUniversityofTechnology,Guangzhou510640,China;2.KenfloPumpsCo.Ltd.,Foshan528000,China)Abstract:Liquid-ringvacuumpumpiswidelyusedasanintegralpartinmanyindustries.Thegas-liquidtwo-phaseflowinpumpisverycomplexandinunsteadystate,thusresultinginitslowefficitencyandhighenergyconsumption.Existingtheorteticanalysesarehardtoexpressaccuratelysuchaflowinthepump.So,theEulerianmultiphaseapproachinFLUENTsoftwareisintroducedincombinationwithslidingmeshtechniquetosimulatemumericallythe3-Dunsteadygas-liquidtwo-phaseflowwithinasingle-stageliquid-ringvacuumpump,includingtheairinlet/outletsection,vanewheel,waterinletandpumpbody,aswellasthetwo-phaseflowrate.Theslidinggridinterfacesareprovidedattheinterfacebetweenvanewheelandairinlet/outletandthatbetweenvaneofftakeandpumpcase.Thesimulationcomputationresultsthuscananalyzeessentiallythetwo-phaseflowandwillplayanimportantroleintheoptimaldesignofliquid-ringvacuumpump.Keywords:liquidringpump;gas-liquidtwo-phaseflow;numericalsimulation1。。。、、、、、、、。。30%~45%50%。、1Fig.1SchematicofliquidringpumpVACUUM46[1~9]。CFD。①。②。③。。1k-ek-e。nq坠αq坠t+塄·αqvqq)=0(1)坠坠t+αqρqvqq)+塄·αqρqvqqvqq)=-αq塄p+塄·[τ]+αqρqqg+αqρqFqqq+qFlift,q+qFVm,q)+np=1ΣKpq(vqq-vqq)(2)[τq]=αqρq(塄vq+塄vq')+αqλq-23μqqq塄·vqq[I](3)[τq']=23(ρqkq+ρqμt,q塄·vqq)[I]+ρqμt,q(塄vq+塄vq')(4)μt,q=ρqCμkq2εq5kq坠坠t(αqρqkq)+塄·(αqρqvqqkq)=塄αq-μt,qσk塄kqqq+(αqGk,q-αqρqεq)+Nl=1ΣKlq(Clqkl-Cqlkq)-Nl=1ΣKlq(vlq-vqq)·μt,lαlσl塄αl+Nl=1ΣKlq(vlq-vqq)·μt,lαlσl塄αq6εq坠坠t(αqρqεq)+塄·(αqρqvqqkq)=塄αq-μt,qσε塄εqqq+εqkq[C1εαqGk,q-C2εαqρqεq+C3ε(Nl=1ΣKlq(Clqkl-Cqlkq)-Nl=1ΣKlq(vlq-vqq)·μt,qαlσl塄αl+Nl=1ΣKlq(vlq-vqq)·μt,lαqσq塄αq)]7αqqαq1。tvqqqρqqμqλqqkqqεqqμt,qqqgKpqpqqFqqqFlift,qqqFVm,qq。塄qvpq塄qvp'q[I]CμC1εC2εC3εGk,qqClqCql。FLUENT6.2。1~7。22.1、1。1Table1Basicdesignparametersoftheliquid-ringvacuumpump2.2。dm0.05Dm0.105m0.708nr/min372βdeg45Bm0.708r2m0.355r1m0.175em0.04δm0.012Z1850··22。2Table2Physicalpropertiesandoperatingparametersoffluids2.3、Pro/E2。3。、。ab、3Fig.33-DphysicalmodelofflowdomaininliquidringpumpPro/EFLUENTGAMBIT/4686591295684。CFDFrozenRotorApproach、MixingPlane、SlidingMesh、DynamicMesh。、。、。FLUENTMovingMesh。①②③。0.1s0.005s0.005s。SIMPLE。、。4Fig.4Divisionofgridandflowdomaininliquidringpump3。5t=5.0s25m/s。5t=5.0sFig.5Velocityvectorofgas-phaseflowinliquidringpump(t=5.0sec)m3/h8.52280Pa1600Pa101325K300kg/m3998kg/(m·s)1.003×10-31.789×10-5J/(kg·K)41821006.4W/(m·K)0.60.02422Fig.2Assemblageofliquidringpump51··VACUUM4610m/s。6t=5.0sα=1α=0。6。abc6t=5.0sFig.6Distributionofthetwophasesinliquidringpump(t=5.0sec)abc7t=5.0sFig.7Distributionofstaticpressureinflowfieldinliquidringpump(t=5.0sec)7t=5.0s。7。。。。4、。。。[1]Nelson,RonaldE.,Vacuumpumpaidsejectors[J].HydrocarbonProcessing,1982,61(12):95-96.[2]LovellSJ.Optimizedvacuumsystemdesignforcrudeoildistillation[J].AmericanSocietyofMechanicalEngineers,PetroleumDivisionPD(Publication),1988,13:5-10.[3]EndoNaoki,YabeAkira,YamashitaIwao,Helicalliquidringcompressorforasteamcompressionheatpump:I.Conceptandbasicrunningcharacteristics[J].HeatTransfer-AsianResearch,2000,29(8):660-673.[4].ELMO-F[J].2000,211:36-37.[5],.[J].1990(4):29-31。[6].[J].1995(4):36-38.[7],.[J].2005(2).[8].[J].1994(6).[9]..2006.52··