2022/4/281低温压力容器国家压力容器与管道安全工程技术研究中心合肥通用所压力容器检验站2022/4/282概况低温技术是19世纪末在液态空气工业上发展起来的,随着科学技术的进步,低温技术在近30年中得到了迅速发展和广泛应用。低温压力容器是低温工业过程的关键设备。碳钢和低合金钢制低温压力容器的特点是容易产生低温脆性破坏。低温脆断是在没有预兆的情况下突然发生的,危害性很大,因此在选材、试验方法和制造等方面均要采取措施,防止低温脆断事故发生。铝、钛、奥氏体不锈钢制低温压力容器则没有低温脆断的情况。对于深低温条件下运行的容器,应有良好的低温绝热结构和密封结构。表1常见的低温工业过程过程种类温度条件℃过程种类温度条件℃石油精炼过程丙烷脱腊-40工具钢的低温处理-90血浆的冷冻干燥-40天然气的液化-160青霉素的冷冻干燥-40~-90炼焦油煤气分离乙烯-190氯气的液化-50液态空气的制作-190石油精炼过程o2脱腊-60由天然气萃取氦气-200一氧化二氮的精制-902022/4/283低温压力容器的低温界限1、按常规设计的压力容器规范多采用经验的总结,包括了失效、破坏的经验总结。所以各国根据各自的使用经验,人为划分低温界线。我国压力容器规范多年来习惯把小于或等于-20℃作为低温界线。实践表明这样划分具有足够的安全性。目前世界各国按规则设计的压力容器规范,对低温压力容器划分的温度界限各不相同,如表2所示。2、按应力分析法设计的压力容器规范要求容器在整个使用(包括制造)过程中,无论在常温或低温下使用,都应具有一致的韧性要求,以防止在各个使用环节上发生脆性断裂。因此,按应力分析法进行设计的压力容器规范,如ASMEⅧ-2,中国的JB4732都不划分低温与常温的温度界限。国家美国日本德国法国英国规范名称ASMEⅧ-1JISB8270AD规范非直接火受压设备设计规范BS5500低温界线<-30℃<-10℃<-10℃≤-20℃<0℃表2各国钢制容器规范的低温界线2022/4/284低温压力容器和管道的典型结构⑴⑴液氧、液氮和液氩压力容器图115L杜瓦容器(液氧、液氮和液氩可以互换)1盖2内颈管3内胆4外壳5拉手6支承垫7铝壳8吸附剂9弹簧10抽气管11抽气管护罩2022/4/285低温压力容器和管道的典型结构⑵⑴液氧、液氮和液氩压力容器图2CF-100000液氧储槽1、仪表箱;2、液氧蒸发器;3、抽真空管;4、盖板2022/4/286低温压力容器和管道的典型结构⑶⑴液氧、液氮和液氩压力容器图3WYN-180型运输用低温容器(液氧、液氮和液氩可以互换)1、真空封口;2、支承;3、输液管;4、定点液位计;5、引线管;6、挡板;7、外壳;8、吸附剂;9、安全阀;10、增压系统;11、压差液位计;12、盖板;13、仪表板、14、内胆;15、增压管。2022/4/287低温压力容器和管道的典型结构⑷⑴液氧、液氮和液氩压力容器图438M3铁路液氧槽车1、外壳体;2、内容器;3、吊杆;4、排液阀;5、排液管。2022/4/288低温压力容器和管道的典型结构⑸⑵液氢和液氦压力容器图5液氮保护的液氢容器1液氮注入和排除2液氢阀3液氢注入和排除4辐射屏5聚四氟乙烯缓冲块6叠片绝热支承7氮排气管8氢排气管9氢安全阀10氮安全阀2022/4/289低温压力容器和管道的典型结构⑹⑵液氢和液氦压力容器图6100L多屏绝热液氦容器1抽气铅管2铅管护罩3颈管4铜翅片5多层绝热6外壳7传导屏8内胆9加强圈10支承短管11吸附腔12吊钩13不锈钢丝绳14底座2022/4/2810低温压力容器和管道的典型结构⑺⑶液化天然气储存容器图7东京煤气公司130000M3地下液化天然气储罐2022/4/2811低温压力容器和管道的典型结构⑻⑷低温液体输送压力管道及设备图8低温阀门1、摆动杆;2、可拆卸的罩;3、阀。2022/4/2812低温压力容器的结构材料低温压力容器的内胆常采用奥氏体不锈钢、铝合金、铜合金;液化天然气的内胆也可采用9%Ni镍钢和36%Ni钢;液氟容器的内胆多用蒙乃尔合金或不锈钢。低温压力容器的外壳通常采用碳钢(如Q235、16MnR等)。内胆与外壳连接管道和构件常用热导率小的奥氏体不锈钢、蒙乃尔合金。低温液体名称化学符号沸点(℃)采用的金属材料容器结构硫化氢H2S-60.33.5Ni钢06MnNb钢双壁二氧化碳CO2-78.4乙炔C2H2-84.02乙烷C2H6-88.63乙烯C2H4-103.715.5Ni钢、9Ni钢铝合金36%Ni钢氪Kr-153.36甲烷CH4-161.45氧O2-182.939Ni钢、铜铝合金0Cr18Ni9Ti20Mn23Al真空型绝热氩r-185.86氟F2-188.12氮N2-195.8氖Ne-246.06铝合金、铜铜、0Cr18Ni9Ti15Mn26Al4真空型绝热重氢D2-249.49氢H2-252.77氦He-268.932022/4/2813低温钢制压力容器(标准规范)国内:⑴GB150-1998《钢制压力容器》;⑵《压力容器安全技术监察规程》;⑶JB4732《钢制压力容器分析设计标准》。国外:⑴美国ASME锅炉压力容器规范Ⅷ-1、Ⅷ-2;⑵英国BS5500-97《非直接受火熔焊压力容器规范》;⑶德国AD《压力容器规范》;⑷日本JISB8270-1993《压力容器基础标准》;⑸日本JISB8240-1993《制冷用压力容器结构》;⑹法国CODAP-1995《压力容器构造》。2022/4/2814低温钢制压力容器(低应力脆性断裂)19世纪末以来,在严寒地带的铁轨、桥梁和结构件曾发生一系列低温脆性断裂事故。本世纪40年代以来,许多压力容器、管道、化工设备及大型结构等焊接结构,多次发生低应力脆断,造成了巨大的损失。低应力脆断具有下列特点:a、断裂时容器名义应力低于材料的屈服强度,在断裂之前没有或者只有局部极小的塑性变形;b、裂纹扩展速率大;c、低应力脆断多属解理断裂或准解理断裂(穿晶断裂),及脆性断裂(沿晶断裂),断口有晶粒状特点,光亮和平滑;d、低应力脆断往往发生在有缺口或裂纹的容器上,并以筒体自身存在的各种工艺缺陷及杂质作为裂纹源;e、断裂一般发生在较低温度下,此时材料的韧性很差。通过对金属断裂机理进行分析,发现金属的低温韧性,即缺口尖端处的金属微观塑性变形能力是决定压力容器抵抗应力脆断破坏的能力。2022/4/2815低温钢制压力容器-低温韧性影响因素1、晶体结构因素:体心立方结构的铁素体钢脆性转变温度较高,脆性断裂倾向较大;面心立方结构金属如铜、铝、镍和奥氏体钢则没有这种温度效应,即不产生低应力脆断。2、化学成分的影响:对低温压力容器而言,增加含碳量将增大材料的脆性,提高脆性转变温度,低温用钢含碳量不超过0.2%。锰、镍改善钢材低温韧性,少量V、Ti、Nb、Al弥散析出碳化物和氮化物,进行沉淀强化改善钢材低温韧性。3、晶粒度的影响:晶粒尺寸是影响钢低应力脆断重要因素。细晶粒使金属有较高断裂强度,且使脆性转变温度降低。4、夹杂物的影响:磷易产生晶界偏析,钢中的氧以各种氧化物的形式在晶界析出,显著提高钢的脆性转变温度,导致低应力脆断。5、热处理和显微组织影响:对钢的低应力脆断有很大影响。调质处理可以改善钢材低温韧性,但回火温度不应过高;正火处理用得最多;退火处理组织粗大,一般不采用。6、冷变形的影响:冷变形使钢的韧性降低,应变时效使低温韧性恶化,脆性转变温度升高。7、应力状态的影响:焊接接头中有裂纹存在又具有残余应力时,低应力脆断性质更为明显。2022/4/2816低温压力容器用钢的韧性要求早期的ASME规范,对当时规范所推荐钢板的大量夏比(V形缺口)冲击试验结构中,发现起裂型钢板的最大冲击功约为14J,传裂型钢板最大冲击功不超过18J,大于27J的均属于止裂型。基于当时的研究结果,将V形缺口冲击试验冲击功AKV=20J作为材料在其最低使用温度下的韧性考核指标。到了1953年,由于使用了较高强度的钢种,因而对高强度钢种应分别对指标进行校正(或附加侧向膨胀量≥0.38mm)。目前国外容器规范采用20J作为低碳钢在最低工作温度或设计温度下钢材缺口韧性唯一判据的有:美国ASMEⅧ-1及Ⅷ-2,法国规范等。AD规范W10采用DVM试样的冲击功作为判据,即在设计温度下的DVM试样冲击功韧性为横向35J/cm2,此值相当于采用V形缺口夏比试样,在设计温度提高10℃的试验温度下达到纵向27J。一般认为在采用相同试样型式的前提下,纵横向的冲击功之比大约为1∶0.7。GB150参考采用了ASMEⅧ-1的有关规定,以20J作为低碳钢强度级别的钢材的验收判据。对钢板来讲国内要求横向取样,其冲击功要求并不低于国外规则对钢材的韧性要求。2022/4/2817钢材低温韧性的评定方法自40年代钢结构的脆性断裂引起人们重视以来,各国对钢材低温韧性的评定方法以及评定指标进行了广泛的研究及试验,包括:低温冲击韧性试验(V形缺口、U形缺口、DVM试样);落锤试验;全厚度的大型试验(宽板试验、双重拉伸试验、ESSO试验);断裂力学试验(平面应变断裂韧性KIC及裂纹尖端张开位移COD法)。其中以低温夏比(V形缺口)冲击试验应用最为广泛,低温压力容器用钢的冲击试验温度应低于或等于壳体或主要受压元件的最低设计温度。1、美国ASME规范Ⅷ-1、Ⅷ-2;日本JIS8243;德国AD《压力容器规范》;法国CODAP-1995《压力容器构造》以(V形缺口)冲击试验为依据。2、英国BS5500-97《非直接受火熔焊压力容器规范》以宽板试验为基础,以(V形缺口)冲击试验为工程评定方法;3、日本WES3003《低温结构用钢板评定基准》及JISB8250《压力容器构造-另一标准》以温度梯度型双重拉伸试验,以ESSO试验为基础,以缺口冲击试验作为工程评定方法。4、美国ASME规范Ⅲ《核动力装置设备》是国外唯一的以断裂力学理论为基础的规范,采用缺口冲击试验及落锤试验作为工程的评定方法。2022/4/2818低温压力容器用钢板和锻件一、国内、外常用的低温用钢主要采用低温铝镇静钢和镍系低温钢1、低温铝镇静钢:16MnDR、09Mn2VDR、09MnTiCuRe、06MnVAl、06AlNbCuN2、镍系低温钢①0.5~2.25%Ni(-70℃)②3.5%Ni(-101℃)③5%Ni(–120~–170℃)④9%Ni广泛用于液氧储罐,强度高,具有良好的低温韧性。(-196℃)(2.5Ni(-60℃,AKV≥47J);3.5Ni(-100℃,AKV≥47J);9Ni(-170℃,AKV≥47J);15Mn26A14(-253℃,AKV≥47J);3、奥氏体不锈钢:1Cr18Ni9(-196℃(AKV≥47J))~700℃)二、(GB150《钢制压力容器》、GB3531《低温用压力容器用钢板》。16MnDR(-40℃,AKV≥24J);15MnNiDR(-45℃,AKV≥27J);09Mn2VDR(-40℃,AKV≥27J);09MnNiDR(-40℃,AKV≥27J);07MnNiCrMoVDR(-40℃,AKV≥47J)。三、低温压力容器用钢锻件08MnNiMoVD(-40℃,AKV≥47J);10Ni3MoD(-50℃,AKV≥47J);09Mn2VD(-50℃,AKV≥27J);20MnMoD(-30℃,AKV≥27J);16MnD(-40℃,AKV≥20J);09MnNiD(-70℃,AKV≥27J)。2022/4/2819防止低应力脆断的设计原则目前所有的容器规范对低温压力容器的设计,是根据室温抗拉强度或屈服强度所决定的许用应力进行设计。该方法能有效地防止发生大塑性变形的破坏。如何确定需要的韧性水平,应根据采用何种原则决定。第一种原则:允许存在一定的缺陷,但应能防止开裂。在焊接部位一般来说存在缺陷较多且韧性较差。而断裂总是从缺陷和韧性较差的地方开始的。因此采用这一原则时必须测定热影响区和熔合线的性能。要求韧性最差的地方能承受外载荷所产生的应变。第二种原则:允许有缺陷存在并有可