DispersiveTransport&Advection-dispersionEquation(ADE)C0C0AdvectiononlyAdvection&DispersiontCCvxii)(v=q/θAssumingparticlestravelatsameaveragelinearvelocityv=q/θInfact,particlestravelatdifferentvelocitiesvq/θorvq/θDerivation(推导)oftheAdvection-DispersionEquation(ADE)Assumptions1.Equivalent(当量)porousmedium(epm)(i.e.,amediumwithconnectedporespaceoradenselyfracturedmediumwithasinglenetworkofconnectedfractures)2.Miscibleflow(混相流动)(i.e.,solutesdissolveinwater;DNAPL’s(重非轻亲水相液体)andLNAPL’s(轻非轻亲水相液体)requireadifferentgoverningequation.Seep.472,note15.5,inZhengandBennett.)3.NodensityeffectsDensity-dependentflowrequiresadifferentgoverningequation.SeeZhengandBennett,Chapter15.FiguresfromFreeze&Cherry(1979)shhKAQ12Darcy’slaw:h1h2q=Q/AadvectivefluxfA=qch1h2f=F/AAdectivefluxh1h2fA=advectiveflux=qcf=fA+fDHowtoquantifythedispersiveflux?21DiffdccFDAxHowaboutFick’slaw(见下一张PPT)ofdiffusion?whereDdistheeffectivediffusioncoefficient.Fick’slawdescribesdiffusionofionsonamolecularscaleasionsdiffusefromareasofhighertolowerconcentrations.(Zheng&Bennett,Fig.3.8.)Transverse:横向Weneedtointroducea“law”todescribedispersion,toaccountfor(解释)thedeviation(偏差)ofvelocitiesfromtheaveragelinearvelocitycalculatedbyDarcy’slaw.AveragelinearvelocityTruevelocitiesWewillassumethatdispersionfollowsFick’slaw,orinotherwords,thatdispersionis“Fickian(费克方程)”.Thisisanimportantassumption;itturnsoutthattheFickianassumptionisnotstrictlyvalid(有效的)nearthesourceofthecontaminant.21DccfDxwhereDisthedispersioncoefficient.porositycvcxhhKcqfxxA][12AdvectivefluxxccDfxD12DispersivefluxAssume1DflowDisthedispersioncoefficient.Itincludestheeffectsofdispersionanddiffusion.DxissometimeswrittenDLandcalledthelongitudinal(纵向的)dispersioncoefficient.porosityCase1*DvDLx0*DDD*istheeffectivemoleculardiffusioncoefficient[L2T-1]isthetortuosity(扭转)factor[-]1Assume1DflowandapointsourceCase2Tracer:示踪剂fA=qxcAdvectivefluxDxrepresentslongitudinaldispersion(&diffusion);Dyrepresentshorizontaltransverse(水平横波)dispersion(&diffusion);Dzrepresentsverticaltransversedispersion(&diffusion).)(12xccDfxDx)(12zccDfzDzDispersivefluxes)(12yccDfyDyFigurefromFreeze&Cherry(1979)ContinuouspointsourceInstantaneous(瞬时的)pointsourceAveragelinearvelocitycenterofmassUniform:均匀的FigurefromWangandAnderson(1982)InstantaneousPointSourcetransversedispersionlongitudinaldispersionGaussianEllipse:椭圆;variance:方差、差异;lateral:横向的Derivation(推导)oftheADEfor1Duniformflowand3Ddispersion(e.g.,apointsourceinauniformflowfield)f=fA+fDMassBalance:Fluxout–Fluxin=changeinmassvx=aconstantvy=vz=0DefinitionoftheDispersionCoefficientina1Duniformflowfieldvx=aconstantvy=vz=0Dx=xvx+DdDy=yvx+DdDz=zvx+Ddwherexyzareknownasdispersivities(弥散度).Dispersivityisessentially(本质上)a“fudge(蒙混)factor”toaccountforthedeviationsofthetruevelocitiesfromtheaveragelinearvelocitiescalculatedfromDarcy’slaw.Ruleofthumb:y=0.1x;z=0.1ytcxcvzcDycDxcDzyx222222ADEfor1Duniformflowand3DdispersionNosink/sourceterm;nochemicalreactionsQuestion:Ifthereisnosourceterm,howdoesthecontaminantenterthesystem?tcxcvxcD22SimplerformoftheADEUniform1Dflow;longitudinaldispersion;Nosink/sourceterm;nochemicalreactionsThereisafamousanalyticalsolutiontothisformoftheADEwithacontinuouslinesourceboundarycondition.ThesolutioniscalledtheOgata&Bankssolution.Question:Isthisequationvalidforbothpointandlinesourceboundaries?Effectsofdispersionontheconcentrationprofile(Zheng&Bennett,Fig.3.11)nodispersiondispersion(Freeze&Cherry,1979,Fig.9.1)t1t2t3t4EffectsofdispersiononthebreakthroughcurveFigurefromWangandAnderson(1982)InstantaneousPointSourceGaussianBreakthroughCurve(浓度比值和时间的曲线)ConcentrationProfile(浓度比值和距离的曲线)longtailFigurefromFreeze&Cherry(1979)Microscopicorlocal(局部的)scaledispersionMacroscopicDispersion(causedbythepresenceofheterogeneities(异质性))HomogeneousaquiferHeterogeneousaquifersFigurefromFreeze&Cherry(1979)Plug:栓子;dilution:稀释Dispersivity()isameasureoftheheterogeneitypresentintheaquifer.Averyheterogeneousporousmediumhasahigherdispersivitythanaslightlyheterogeneousporousmedium.Dispersionina3Dflowfieldxzx’z’globallocalKxxKxyKxzKyxKyyKyzKzxKzyKzzK’x000K’y000K’z[K]=[R]-1[K’][R]K=zhKyhKxhKqzhKyhKxhKqzhKyhKxhKqzzzyzxzyzyyyxyxzxyxxxDispersionCoefficient(D)D=D+DdDxxDxyDxzDyxDyyDyzDzxDzyDzzD=Ingeneral:DDdDrepresentsdispersionDdrepresentsmoleculardiffusionzcDycDxcDfzcDycDxcDfzcDycDxcDfzzzyzxDzyzyyyxDyxzxyxxDxIna3Dflowfielditisnotpossibletosimplifythedispersiontensortothreeprincipalcomponents.Ina3Dflowfield,wemustconsiderall9componentsofthedispersiontensor.Thedefinitionofthedispersioncoefficientismorecomplicatedfor2Dor3Dflow.SeeZhengandBennett,eqns.3.37-3.42.Dx=xvx+DdDy=yvx+DdDz=zvx+DdRecall,thatfor1Duniformflow:GeneralformoftheADE:Expandsto9termsExpandsto3terms(Seeeqn.3.48inZ&B)EffectoflongitudinalandtransversedispersivitiesontheplumeconfigurationFigure3.24.fromZheng&Bennett