小学四年级数学《探索与发现(一)三角形内角》教案样例5“三角形内角和”的度数推理是三角形中的重要环节,是“空间与图形”领域的重要内容之一。以下是网友带来的小学四年级数学“三角形内角的探索与发现(一)”的范文。请参考下载!小学四年级数学《探索与发现(一)三角形内角》教案模板一教学背景:“三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下基础,并且培养学生的数学思维能力,波利亚指出:“学习任何东西最好的途径是自己去发现”。通过本节课学习,让学生自己发现、探索获得学习数学的思维方法,增强信心。教学课题:北师大版小学数学四年级下册第二单元内容《探索与发现(一)三角形内角和》。教材分析:教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。本节课首先让学生对三角形的特点进行复习。随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探索三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探索过程。学情分析:有的学生可能从各种渠道已经对“三角形内角和是180°”有所了解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深刻。经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的计算机操作。教学方法:渗透猜想——验证——结论——应用——拓展教学目标:1、知识目标:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。已知三角形两个角的度数,会求第三个角的度数。2、能力目标:通过渗透猜想--验证--结论--运用—拓展的学习方法,提高学生动手操作和合作交流的能力,培养学生的主体探究意识。3、情感目标:培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣,体验学习数学的快乐。教学重点:掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题教学难点:是探索性质的过程。教学过程:一、创设情境,激发兴趣引入新课师:同学们,这节课我们学习探索与发现(一)。上节课我们已经认识了三角形,知道了三角形的特点。哪位同学能说说三角形有哪些特点呢?生回答。(互相补充)师:老师这里有个三角形,谁愿意上来指出三角形的三个角?(课件出示)师:这三个角,是三角形的内角,三个内角的和,就是三角形内角和。今天,我们就来研究一下和三角形的内角和有关的一些知识。(课件出示课题:三角形的内角和)二、探究验证师:下来同学们看一下对这三个不同三角形内角和的一些说法。(课件演示)我想问问同学们,他们的说法对吗?学生各抒己见。同学们,下来我们来研究、验证他们各自的说法。验证一:测量(课件出示)(1)测量,小组合作。(共同观察:一个学生测量,一个检验,一个记录,另一个学生报告结果。)学生开始进行测量,教师巡视。教师选取其中几组记录单进行讲评。(2)汇报结果(这些测量结果都在180度左右,但不是精确的180度)。原因:①有可能是我们在量三角形里有一些误差。②我认为也可能是量角器出现误差了。③或许量的时候是半度的,我们四舍五入为整数了,所以出现了误差。师:你们说的都有可能,但是,不管怎样,从我们的测量结果,是否能很好的说明上面3个三角形说法对与错呢?生:不能。师:那我们继续来验证。验证二:撕拼。(1)同学们取出三角形学具,把三个角撕下来,拼在一起。学生动手操作。(注意把三个角的顶点对在一起)(2)提问:你发现了什么?学生发现:三个角拼成一个平角。平角是多少度?说明了什么?学生回答:平角是180°。说明三角形内角和刚好等于180°.(课件演示撕拼过程)同学们,我们还有没有其他的验证方法呢?验证三:折叠。可以把三角形的三个角折叠在一起,如果能在一条线上,就可以说明它们的和是180度。学生动手折叠,教师巡视,指名几个同学上来说一说折叠的结果。(课件展示)师:折叠好的同学说一说。这样,是不是就能验证三角形的内角和都是180度了?生:是。(如果还有其他方法,希望同学们互相讨论,进行再一次验证)(课件展示)师:现在,通过3种方法验证,这三个三角形的内角和都一样是180度,这样他们3个三角形也就没有可争执的了。那么,我们也该放松一下做些练习了。三、解决问题师:我们应用这个结论,来练习几个题目。(课件展示)在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。小学四年级数学《探索与发现(一)三角形内角》教案模板二一、教材分析“三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下基础。本节课首先让学生对三角形的特点进行复习,随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探索三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探索过程。二、学情分析有的学生可能从各种渠道已经对“三角形内角和是180°”有所了解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深刻。经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的计算机操作。三、教学方法渗透猜想——验证——结论——应用——拓展教学目标:1、通过直观操作的方法,探索并发现三角形三个内角和等于180度,在实践活动中,体验探索的过程和方法2、能应用三角形内角和的性质解决一些简单的问题。教学重点:经历三角形的内角和是180°这一知识的形成、发展和应用的全过程,会应用三角形的内角和解决实际问题;教学难点:是探索和验证性质的过程。四、教具学具三角板、量角器、剪刀、白纸五、教学过程(一)、激趣导入,揭示课题1、师:同学们,猜猜它是谁?形状似座山,稳定性能坚,三竿首尾连,学问不简单(打一几何图形)三角形(板书)我们已经认识了什么是三角形,谁能说出三角形有什么特点?生回答。(互相补充)(课件演示三条线段围成三角形的过程)三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。2、现在,我们来玩一个跟三角形的角有关的游戏。只要大家说出三角形任意两个角的度数,老师就能猜出第三个角,你们相信吗?要求每个4人小组拿出本组预先准备的学具袋。(内含四个不同的三角形,包括直角、锐角和钝角三角形至少各一个,且要求大小不一。)3、活动——量一量:每人任意拿出一个自己带来的三角形,用量角器量出三角形中三个角的度数,并写在三角形中。(独立完成,非小组合作。)然后分别请几个学生报出不同三角形的两个角的度数,教师当即说出第三个角的度数。(事先向学生说明误差仅为3、4度左右。)你们知道老师是怎么猜出来的吗?到底它们之间有什么样的秘密呢?我们今天这节课就要来揭开这个秘密。(二)、动手操作,探究新知1、探究特殊三角形的内角和拿出两个三角板,问:它们是什么三角形?(直角三角形)请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。从刚才两个三角形内角和的计算中,你们发现了什么?(这两个三角形的内角和都是180°)。这两个三角形都是直角三角形,并且是特殊的三角形。设计意图三角板是学生非常熟悉的学习用具,度数也是非常清楚,通过计算学生熟悉的三角板内角和来验证这个结论,学生也容易接受。2、探究一般三角形内角和(1)猜一猜。猜一猜其它三角形的内角和是多少度呢?(可能是180°)(2)操作、验证一般三角形内角和是180°。所有三角形的内角和究竟是不是180°,你能用什么办法来证明?(可以先量出每个内角的度数,再加起来。)那就请小组共同计算吧!将学生采用分组的方法分成锐角三角形组、直角三角形组、钝角三角形组、等腰三角形组,各组在白纸上任意画三角形,并量出每个内角的度数,计算三角形内角和。由组长统计记录员记录各组的内角和情况。(3)小组汇报结果。请各小组汇报探究结果。提问:你们发现了什么?小结:通过测量计算我们发现每个三角形的三个内角和都在180°左右。设计意图学生任意画的三角形,有大的、有小的,有各种类型的,不论是什么样的三角形,学生都亲自动手动笔算出内角和。这个探索过程简单学生又容易接受。3、操作验证(1)动手操作,验证猜测。没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?请同学们动脑筋想一想,能通过动手操作来验证吗?(先小组讨论,再汇报方法)(2)学生操作,教师巡视指导。(3)全班交流汇报验证方法、结果。学生放在投影仪上展示给大家看。(剪拼、撕拼、折拼)我们可以得出一个怎样的结论?(三角形的内角和是180°)引导学生通过剪拼、撕拼和折拼的方法发现:各类三角形的三个内角都可以拼成一个平角,证实三角形内角和确实是180°,测量计算有误差。设计意图学生通过亲自动手操作,将三角形的三个内角剪拼成一个平角,形象、直观地说明了“三角形内角和是180度”这个结论。5、辨析概念,透彻理解。(出示一个大三角形)它的内角和是多少度?(出示一个很小的三角形)它的内角和是多少度?一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?(学生有的答360°,有的180°.)把大三角形平均分成两份。每个小三角形的内角和是多少度?(生有的答90°,有的180°)这两道题都有两种答案,到底哪个对?为什么?(学生个个脸上露出疑问。)大家可以在小组内用三角尺拼一拼,也可以画一画,互相讨论。学生发现:三角形不论位置、大小、形状如何,它的内角和总是180°(三)小结刚才同学们用很多方法证明了无论是什么样的三角形内角和都是180°,现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。(四)、巩固练习,拓展应用下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)1、求三角形中一个未知角的度数。在三角形中,已知∠1=85°,∠2=65°,求∠3。2、判断(1)一个三角形的三个内角度数是:90°、75°、25°。()(2)一个三角形至少有两个角是锐角。()(3)钝角三角形的内角和比锐角三角形的内角和大。()(4)直角三角形的两个锐角和等于90°。()3、解决生活实际问题。(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?(2)交通警示牌“让”为等边三角形,求其中一个角的度数。4、拓展练习。利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)小组的同学讨论一下,看谁能找到方法。六、课堂总结通过这节课的学习,你有哪些收获?小学四年级数学《探索与发现(一)三角形内角》教案模板三教学目标:1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。教学重点:1、探索和发现三角形三个内角和的度数和等于180o。2、已知三角