小学六年级数学《解比例》教案范本3教案是教师设计和安排教学内容、教学步骤、教学方法等的实践性教学文件。为了顺利有效地开展教学活动,根据课程标准、教学大纲和教材要求以及学生的实际情况,以课时或课题为单位。下面是网友给大家带来的六年级数学《解比》的教案模型。请参考下载吧!小学六年级数学《解比例》教案范本一一,教学目标1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。2、学会应用比例的意义和基本性质解决实际问题。二,教学重点:掌握解比例的方法,会解比例。三,教学难点:应用比例的意义和基本性质解决生活中的实际问题。四,教学预设:(一)、自学反馈1、什么叫做解比例2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?(1)你会解答吗?独立解答后,同桌间相互说说想法。(2)反馈交流①240÷3×2=160(厘米)②解:设我们学校国旗的宽是厘米。240:=3:23=240×2=240×2÷3=160答:我们学校国旗的宽是160厘米。(3)你是怎么想的?(二)、关键点拨1、用比例解决实际问题(1)你明白第二种解法的意思吗?(2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为厘米,建立比例240:=3:2,再通过解比例求出的值。(3)小结:这种方法叫做用比例解决实际问题。2、解比例的方法(1)你是怎样解比例240:=3:2的?(2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求的值。(3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出的值。(4)怎样才可以确定的值是正确的?(检验)(5)你更喜欢哪种解法?为什么?(三)、巩固练习1、解下面的比例:10=:0.4:=1.2:2=2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)学生独立完成,汇报交流。3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。(1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。(2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?学生回答第一个问题,板书。再让学生观察是否能成比例。分析:第一个问题应该说比较简单,比分别是25:200和30:250。(四)、分享收获畅谈感想这节课,你有什么收获?听课随想小学六年级数学《解比例》教案范本二教学目标1.使学生理解解比例的意义.2.使学生掌握解比例的方法,会解比例.教学重点使学生掌握解比例的方法,学会解比例.教学难点引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.教学过程一、复习准备(一)解下列简易方程,并口述过程.2=8×9(二)什么叫做比例?什么叫做比例的基本性质?(三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?6∶10和9∶1520∶5和4∶15∶1和6∶2(四)根据比例的基本性质,将下列各比例改写成其他等式.3∶8=15∶40二、新授教学(一)揭示解比例的意义.1.将上述两题中的任意一项用来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.2.学生交流根据比例的基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.(二)教学例2.例2.解比例3∶8=15∶1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.2.组织学生交流并明确.(1)根据比例的基本性质,可以把比例改写为:3=8×15.(2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.(3)规范并板书解比例的过程.解:3=8×15=40(三)教学例3例3.解比例1.组织学生独立解答.2.学生汇报3.练习:解下面的比例.=∶=∶三、全课小结这节课我们学习了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.小学六年级数学《解比例》教案范本三知识目标使学会解比例的方法,进一步理解和掌握比例的基本性质。能力目标联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。情感目标利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。重点使学会解比例的方法,进一步理解和掌握比例的基本性质。难点体现解比例在生产生活中的广泛应用。教学过程一、旧知铺垫1、什么叫做比例?2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?3、比例有几种表示形式?二、探索新知1、出示埃菲尔铁挂图2、出示例题(1)、读题。(2)、从这道题里,你们获得了哪些信息?(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。2、教学例3过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?(1)、出示例3,问:这题与刚刚那个比例有哪些不同?(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)(3)、在这个比例里,哪些是外项?哪些是内项?(4)、解答(提问:你们是怎么解答的?)、检验。(5)、=拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?总结这节课主要学习了什么内容?作业布置教材43页5题板书设计解比例例3、解比例=解:2.4=1.5×6=()×()()