新华师大版八年级数学下教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

新华师大版八年级数学下教案等腰三角形的两个底角相等,也可简称为“等边等角”。将等腰三角形对折,对折后的两部分重合,即AB和AC重合,B点和C点重合,线段BD和CD也重合,所以b=c.我们来看看新华师大版八年级数学教案!欢迎咨询!新华师大版八年级数学下教案1一、学习目标:1.经历探索平方差公式的过程.2.会推导平方差公式,并能运用公式进行简单的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2001×1999(2)998×1002导入新课:计算下列多项式的积.(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)例2:计算:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a)(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2新华师大版八年级数学下教案2一、学习目标:1.多项式除以单项式的运算法则及其应用.2.多项式除以单项式的运算算理.二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.2.提问:①说说你是怎样计算的②还有什么发现吗?(三)总结法则1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______2.本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.E、多项式除以单项式法则新华师大版八年级数学下教案3教学目的1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。2.熟识等边三角形的性质及判定.2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。教学重点:等腰三角形的性质及其应用。教学难点:简洁的逻辑推理。教学过程一、复习巩固1.叙述等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。2.若等腰三角形的两边长为3和4,则其周长为多少?二、新课在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。2.你能否用已知的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。3.上面的条件和结论如何叙述?等边三角形的各角都相等,并且每一个角都等于60°。等边三角形是轴对称图形吗?如果是,有几条对称轴?等边三角形也称为正三角形。例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?问题2:求∠1是否还有其它方法?三、练习巩固1.判断下列命题,对的打“√”,错的打“×”。a.等腰三角形的角平分线,中线和高互相重合()b.有一个角是60°的等腰三角形,其它两个内角也为60°()2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。3.P54练习1、2。四、小结由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。五、作业:1.课本P57第7,9题。2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数。

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功