高一数学必修五教案进一步理解函数的单调性,可以利用函数的单调性结合函数的形象,找出相关函数的最小值和值,准确表示相关函数的取值范围;来看看高一数学必修五教案吧!欢迎咨询!高一数学必修五教案1学习目标1.通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;2.初步了解对统计数据表的分析与处理.学习过程一、课前准备(预习教材P104~P106,找出疑惑之处)阅读:2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件.这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人.这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测.二、新课导学※典型例题例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得利润?变式:某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入?小结:找出实际问题中涉及的函数变量→根据变量间的关系建立函数模型→利用模型解决实际问题→小结:二次函数模型。例2某地区不同身高的未成年男性的体重平均值如下表(身高:cm;体重:kg)身高60708090100110体重6.137.909.9912.1515.0217.50身高120130140150160170体重20.9226.8631.1138.8547.2555.05(1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式.(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重78kg的在校男生的体重是否正常?小结:根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程:收集数据→画散点图→选择函数模型→求函数模型→检验→符合实际,用函数模型解释实际问题;不符合实际,则重新选择函数模型,直到符合实际为止.※动手试试练1.某同学完成一项任务共花去9个小时,他记录的完成工作量的百分数如下:时间/小时123456789完成百分数1530456060708090100(1)如果用来表示h小时后完成的工作量的百分数,请问是多少?求出的解析式,并画出图象;(2)如果该同学在早晨8:00时开始工作,什么时候他未工作?练2.有一批影碟(VCD)原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台售价不能低于440元;乙商场一律都按原价的75%销售.某单位需购买一批此类影碟机,问去哪家商场购买花费较低?三、总结提升※学习小结1.有关统计图表的数据分析处理;2.实际问题中建立函数模型的过程;※知识拓展根据散点图设想比较接近的可能的函数模型:①一次函数模型:②二次函数模型:③幂函数模型:④指数函数模型:(0,)学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.向高为H的圆锥形漏斗内注入化学溶液(漏斗下口暂且关闭),注入溶液量V与溶液深度h的大概图象是().2.某种生物增长的数量与时间的关系如下表:123...138...下面函数关系式中,能表达这种关系的是().A.B.C.D.3.某企业近几年的年产值如下图:则年增长率(增长率=增长值/原产值)的是().A.97年B.98年C.99年D.00年4.某杂志能以每本1.20的价格发行12万本,设定价每提高0.1元,发行量就减少4万本.则杂志的总销售收入y万元与其定价x的函数关系是.5.某新型电子产品2002年投产,计划2004年使其成本降低36℅.则平均每年应降低成本%.课后作业某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好.为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能解决这一问题吗?高一数学必修五教案2教学目标:①掌握对数函数的性质。②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值域及单调性。③注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。教学重点与难点:对数函数的性质的应用。教学过程设计:⒈复习提问:对数函数的概念及性质。⒉开始正课1比较数的大小例1比较下列各组数的大小。⑴loga5.1,loga5.9(a0,a≠1)⑵log0.50.6,logЛ0.5,lnЛ师:请同学们观察一下⑴中这两个对数有何特征?生:这两个对数底相等。师:那么对于两个底相等的对数如何比大小?生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。师:对,请叙述一下这道题的解题过程。生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1loga5.9;当a1时,函数y=logax单调递增,所以loga5.1板书:解:Ⅰ)当0∵5.1loga5.9Ⅱ)当a1时,函数y=logax在(0,+∞)上是增函数,∵5.1师:请同学们观察一下⑵中这三个对数有何特征?生:这三个对数底、真数都不相等。师:那么对于这三个对数如何比大小?生:找“中间量”,log0.50.60,lnЛ0,logЛ0.51,log0.50.6板书:略。师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。2函数的定义域,值域及单调性。高一数学必修五教案3学习目标1.进一步理解函数的单调性,能利用函数的单调性结合函数的图象,求出有关函数的最小值与值,并能准确地表示有关函数的值域;2.通过函数的单调性的教学,让学生在感性认知的基础上学会理性地认识与描述生活中的增长、递减等现象.学习重点结合函数的性质求最值.学习难点二次函数中的参数问题.自主预习1.最值的概念:一般地,设函数的定义域为.若存在定值,使得对于任意,有恒成立,则称为的最值,记为;若存在定值,使得对于任意,有恒成立,则称为的最值,记为.2.单调性与最值:设函数的定义域为,若是增函数,则,;若是减函数,则,.3.看图像如何求最值:.练习:如图为函数,的图象,指出它的值、最小值及单调区间.知识应用例1求下列函数的最小值:(1);(2),.变式:(1)将的定义域变为或或,再求最值.(2)将的定义域变为,,结果如何?例2已知函数的定义域是当时,是单调增函数,当时,是单调减函数,试证明时取得值.变式:已知函数的定义域是当时,是单调减函数,当时,是单调增函数,则时取得最值.