JournalofEastChinaUniversityofScienceandTechnologyVol.29No.32003-06E-mail:xxm@ypc.com.cn:2002-08-27:(1965-),,,,:1006-3080(2003)03-0320-0510夏翔鸣*, 徐 宏, 朱奎龙, 王琼琦(华东理工大学化工机械研究所,上海200237):炼油和石油化工工业中大量使用加氢工艺,由于加氢反应器等关键设备的材料为高温临氢服役,开展材料损伤研究和剩余寿命预测分析具有重要的工程意义和学术价值。本文对扬子石化公司芳烃联合装置加氢反应器DC-101A随机试块进行了解剖与性能测试,包括拉伸、冲击、断裂等试验,获得了2.25Cr-1Mo钢在17.47MPa和427°C下运行10万小时后的材料性能,并与运行了4.3万小时时取出的另一随机试块解剖测试结果进行了初步对比。:加氢反应器;在役;脆化;2.25Cr-1Mo钢:TQ051:AMaterialPropertyEmperimentoftheSpecimenfromaHydrogenationReactorafterabout105hServiceXIAXiang-ming*,XUHong,ZHUKui-long,WANGQiong-qi(ResearchInstituteofProcessEquipmentECUST,Shanghai200237,China)Abstract:Inpetrochemicalandpetroleumrefiningindustries,thehydrogenationtechnologyiswidelyused.Asmaterialsusedinkeyequipment,suchashydrogenationreactors,aresubjectedsimultaneouslytotheactionofhydrogenandhightemperature,studiesonmaterialpropertydegradationandremaininglifepredictingareveryimportantwithengineeringandacademicsignificance.Anin-servicetestblocktakenin-sideofthehydrogenationreactorDC-101Awasexamined.Materialpropertiesof2.25Cr-1Mosteelafterserviceofabout105hattheoperatingpressureof17.47MPaandtemperatureof427Cwasobtained,in-cludingtheembrittlementstatus,tensile,Charpyimpact,andfracturetoughnesstests.Testresultswerecomparedwiththoseobtainedbyexperimentsonanothertestblockfromthesamereactorafter4.3104hservice.Relationshipbetweenreactormaterialpropertiesandoperatingtimewasdiscussed.Keywords:hydrogenationreactor;in-service;embrittlement;2.25Cr-1Mosteel198910,10,5(DC-101A/B/C,DC-102,DC-103)DC-101AH2H2SHC,427C,17.12MPa3810mm,237mm,2.25Cr-1Mo(12CrMo910),3.5mmSUS347,H2S,4320,490mm410mm230mm,5,,19951997DC-101ADC-1024.35.8,12.25Cr-1Mo,,JX,[12]:J=(P+Sn)(Si+Mn)104,X=(10P+5Sb+4Sn+As)10-4,DC-101A,JX1DC-101A22,DC-101A10,JX,JX,1Table1ChemicalcompositionofthetestingmaterialSamplepositionLocationinblockCMnSiSPCrMoNiCuAsSnSbJ(%)X106BasemetalT/4T/20.170.170.580.550.050.050.0080.0050.0060.0052.402.370.980.940.210.190.110.10.0080.0070.0070.0070.0030.00381.572.511.110.0WeldT/4T/20.080.090.800.820.310.310.0080.0080.0130.0122.442.441.101.090.050.040.120.120.0040.0040.0020.0030.0030.003166.5169.515.715.1T/4andT/2indicatethedistancefromtheuppersurfacetothebottomofthetestblock2DC-101ATable2Comparisonofthetemperembrittlementparame-tersfortheDC-101ASamplepositionBlockafter105hoperationJ(%)X106SpecificationJ(%)X106Basemetal72.581.510.011.1200Weld166.5169.515.115.725210,3DC-101A10,,3DC-101A10Table3Tensiletestresultsofblockmaterialafter105hoursserviceT/CSamplepositionSamplestatus0.2%Yieldstrength/MPaUltimatestrength/MPaElongation(%)Reductionofarea(%)Blockafter105hoperation474.47626.1920.975.9BasemetalBlockafter4.3104hoperation451.1586.231.365.9RoomTestresultsfromJapansteelworks42044856159124277985temperatureBlockafter105hoperation514.61646.1717.270.5WeldBlockafter4.3104hoperation509.8614.925.871.9TestresultsfromJapansteelworks56162965721.672.4135BasemetalWeldBlockafter105hoperationBlockafter105hoperation459.5510.2575.8616.218.517.977.675.04271)BasemetalWeldBlockafter105hoperationTestresultsfromJapansteelworksBlockafter105hoperationTestresultsfromJapansteelworks415.9305374454.6417451499.9433461525.748251619.1172014.313.415.773.3648371.665.868.11)ResultsfromJapansteelworkswereobtainedfromtestsdoneat440C3213:103JR,GB2038-8010JR3.11,aJi=330.2N/mm,0.05mmJ0.05=348.96N/mm1JRFig.1JRcurveforas-receivedbasemetalsample3.2,,,:630C2h2Ji=315.7N/mm,0.05mmJ0.05=347.65N/mm2JRFig.2JRcurveforde-embrittledbasemetalsample3.3,3Ji=239.65N/mm,0.05mmJ0.05=249.71N/mm3JRFig.3JRcurveforde-embrittledweldsample3.44,,0.05mm,JR,,JIC=Je+Jp=24.3+9.7=34N/mm,3JRJIC4Table4Testresultoffracturepropertiesfortheas-receivedweldsamplesWidthofsample/mmThicknessofsample/mmCracklength/mmCrackgrowth/mmJR/(Nmm-1)JIC/(Nmm-1)23.9423.924.023.919.919.919.9619.9413.2413.7813.9513.510.0140.0460.0920.05234.001)112.70150.60145.42110.671)Fracturedjustaftertheloadwasactedonit55Table5FacturetoughnessofbasemetalandweldsamplesSamplestatusMaterialJi/(Nmm-1)J0.05/(Nmm-1)KIC/(MPamm1/2)As-receivedBasemetalWeld332.28110.671)349.40274.26158.06De-embrittledBasemetalWeld315.71239.65348.45249.71267.34232.921)JICforas-receivedweldsample,J,,,,,32229,44.110DC-101A454Fig.4RelationshipbetweenCVNenergyandtesttemperatureforbasemetalsam-ples5Fig.5Relationshipbetweenpercentageofduc-tilefractureandtesttemperatureforbasemetalsamples4.210DC-101A676Fig.6RelationshipbetweenCVNenergyandtesttempera-tureforweldsamples7Fig.7Relationshipbetweenpercentageofductilefractureandtesttemperatureforweldsamples66,10,,,66.5C()77.9C(6DC-101A104.3Table6DctiletobrittletransitiontemperaturesandtemperembrittlementOperationtime/hMaterialSamplestatusVTr541)/CVTr54/CFATT2)/CFATT/C105BasemetalAs-receivedDe-embrittled-49.4-77.428.0-12.65-46.133.45WeldAs-receivedDe-embrittled66.5-17.483.977.9-6.784.64.3104[3]BasemetalAs-receivedDe-embrittled-51.6-77.325.7-34.2-57.423.21)VTr54istheductiletobrittletransitiontemperaturecorrespondingtotheCharpyimpactenergyof54J;2)FATTistheductiletobrittletransitiontemperaturecorrespondingtothe50percent