第三章金属连接及切割工艺•介绍•焊接工艺•钎焊工艺•切割工艺•术语和定义第三章金属连接及切割工艺2011-11-12•介绍•作为焊接检验师,首先关心的是焊接,但掌握各种连接及切割工艺也是非常有帮助的。虽然焊接检验师不必是有资格的焊工,但以往的焊接经验是很有用的。事实上,很多焊接检验师是从焊工中选取的,而且他们往往能成为最好的检验师。•一个好的焊接检验师,必须掌握各种连接及切割工艺方面的知识,以便有效的进行工作。首先,检验师必须认识到每种工艺的长处或短处,也应该知道特定的工艺可能会产生哪些不连续。虽然许多缺陷的产生是与实施的工艺无关的,但有些缺陷的产生是与特定的工艺有关,这里将对每种工艺可能产生的缺陷进行探讨并将其定为“可能出现的问题”。•焊接检验师也必须具备与各种工艺相关的焊接设备方面的知识,因为缺陷的产生经常是由设备原因引起的。检验师必须在一定程度上掌握各种设备的控制方法以及设备调整与焊接质量之间的关系。•当焊接检验师具备某些工艺方面的基础知识后,他或她便可以准备进行目视焊接检验,这将有助于及时发现问题而不是事后采取花费很大的纠正措施。检验师具备在过程中发现问题的能力无论对生产还是产品质量的控制都是有益的。•本章所讨论的内容分为三个部分:焊接、钎焊和切割。焊接和钎焊用于金属间的连接,而切割则是为了将材料去除或将其分离。对每一种连接和切割方法,这里将描述其主要特性,包括:每种工艺的长处、短处、设备要求、焊条/填充金属、技术、应用范围以及可能出现的问题。第三章金属连接及切割工艺2011-11-12•因此,本课程仅选取与美国焊接学会认可焊接检验师考试相关的工艺进行讨论,详列如下:第三章金属连接及切割工艺2011-11-12•1.焊接工艺•根据美国焊接学会的定义,焊接是“通过将材料加热到焊接温度、加压或不加压,或仅通过加压,使用或不使用填充材料而将金属或非金属在局部接合的过程”,接合即“连接在一起”,因此焊接是指实现连接的操作活动。本节将对加热但不加压的常用焊接工艺的基本特性作一介绍。•1.1手工电弧焊(SMAW)•这里首先要讨论的是手工电弧焊,也就是我们通常所说的“手把焊”,它是通过带药皮的焊条和被焊金属间的电弧将被焊金属加热,从而达到焊接的目的。图3.2给出了手工电弧焊的各种影响因素及成型的情况。第三章金属连接及切割工艺2011-11-12•手工电弧焊中最主要的要素是焊条本身,它是由金属芯外覆一层粒状焊剂和某种粘接剂制作而成的。所有的碳钢和低合金钢焊条基本上都用低碳钢丝做芯,而合金元素则来自于药皮,这也是较为经济的一种合金化方法。•焊条药皮的不同导致了不同焊条种类,焊条药皮有以下五种作用:•保护——药皮分解后产生的气体为熔融金属提供保护。•脱氧——药皮为焊剂去除氧气和其他气体。•合金化——药皮为焊缝提供合金化元素。•电离——药皮改善电特性以增强电弧稳定性。•保温——凝固的焊渣在焊缝金属上的覆盖降低了焊缝金属的冷却速度(次要影响)。•由于焊条在手工电弧焊中的影响很大,就有必要了解其分类和品种。美国焊接学会给出了手工电弧焊焊条的标识方法,见图3.3。例如:E7018第三章金属连接及切割工艺2011-11-12•焊条标识中用字母E和另外四到五个数字组成,字母E代表焊条。前二个数字代表熔敷金属的最小抗拉强度,单位为千磅每平方英寸,“70”就表示熔覆金属的最小抗拉强度为70,000磅每平方英寸(PSI)。•接下来的数字代表焊条的可焊位置。数字“1”表示焊条可用于任何焊接位置,数字“2”表示熔融金属流动性非常好,只能用于平焊或角焊缝的横焊,数字“4”表示焊条可用于立向下焊,数字“3”不再使用。•最后一个数字表示焊条药皮的组成和性能,药皮决定了可焊性和推荐的电流类别,AC(交流),DCEP(直流反接)或DCEN(直流正接)。图3.4列出了手工电弧焊的焊条标识方法。•必须强调的是,焊条最后一个数字为“5”、“6”和“8”的,表示其为“低氢焊条”。为了保持其低氢含量以免受潮,这些焊条必须按原包装密封保存,或贮存在适宜的烘箱内,这些烘箱应采用电加热并将温度控制在150F至350F的范围内,烘箱必须保持低的潮湿度小于0.2%,因此需要有合适的通风能力。任何低氢焊条如果不用或刚拆封应立即放入烘箱,大多数规范均要求低氢焊条在拆封后放入温度不低于250F(120C)的烘箱中。•但是,这里也必须指明的是,除以上说明外,其它焊条放入烘箱可能是有害的。有些焊条是要有一定的潮湿度的,如果潮湿度下降,焊条的可焊性将急剧下降。第三章金属连接及切割工艺2011-11-12第三章金属连接及切割工艺2011-11-12•低合金钢焊接的焊条,是在标准的焊条标识后,再加上用字母和数字组成的后缀,图3.5给出了一些重要的组合。第三章金属连接及切割工艺2011-11-12•手工电弧焊的设备相对简单,一条导线连接待焊工件,另一条导线连接至焊工夹持焊条的焊把,焊条和母材通过焊条和工件靠近后产生的电弧加热后而熔化。•手工电弧焊的电源就是通常所说的恒流电源,它具有“下降”的特性,这个术语可通过观察电源的电压——电流曲线图来加以理解。•当焊工增加弧长时,将会增加焊接回路的电阻,从而导致电流的轻微下降(10%),见图3.7(A),电流的下降促使电压急剧地上升(32%),电压的上升又反过来限制了电流的进一步下降。•由于热量是电压、电流以及时间的函数,可以看出长的电弧((32Vx135Ax60)/10IPM=25,920J/in.)将比短的电弧((22Vx150Ax60)/IPM=19,800J/in.)产生更多的热量。•从工艺控制的角度看,这点很重要,因为焊工可通过改变电弧长度来增减焊缝熔池的流动性。但是,太大的电弧长度将使电弧的集中度降低,从而导致熔池热量的损失,使电弧稳定性降低,也会损失熔池的保护气体。第三章金属连接及切割工艺2011-11-12•除特殊合金材料外,手工电弧焊在大多数工业中大量使用。但它也是一种相对陈旧的焊接方法,有些新的焊接工艺在某些方面的应用上已经取代了它,即便这样,手工电弧焊仍然在焊接工业中广泛应用。•优缺点:•有以下几个原因说明了它应用的广泛性。第一,设备简单而便宜,这就使得手工电弧焊很轻便。事实上,有很多种由汽油或柴油驱动的电焊机,用来完成在没有电的边远地区的焊接任务。还有,有些新的固态电源小而且轻巧,焊工很容易携带它们去工作。另外,由于各种各样的焊条易于获取,这种焊接工艺被认为是万能的。最后,随着设备和焊条的不断改进,这种焊接方法始终能保持很高的焊接质量。•手工电弧焊的其中一个局限性是焊接速度,它受到焊工周期性停止焊接,来更换长度为9到18英寸焊条的限制。手工电弧焊在许多应用场合已被其它半自动、机械化和自动化的焊接工艺所取代,原因就是这些工艺与手工电弧焊相比,有着更高的生产效率。•手工电弧焊的另一个缺点也是影响生产率的,即焊后焊渣的清理。而且,当使用低氢焊条时,还需要有适当的贮存设施如烘箱以保持其较低的潮湿度。第三章金属连接及切割工艺2011-11-12•接下来讨论手工电弧焊可能产生的缺陷,这些缺陷不仅是我们可预料的,也可能来自于工艺使用不当。•一种缺陷是焊缝中的气孔,是由于焊缝周围的潮湿和污染引起的,它可能来自于焊条药皮、材料表面或周围的大气,气孔也可能是由于焊工使用过长的电弧引起的,这点对低氢焊条尤其突出,因此,短弧将有助于减少气孔的出现。•气孔也可能是由所说的“电弧偏吹”现象造成的,它存在于所有的电弧焊当中,这是一种常见问题且常常使手工焊焊工很苦恼。•(1)直流换成交流(和手上教材不同)•(2)尽量使用短弧•(3)减小焊接电流•(4)向电弧偏吹的相反方向倾斜焊条•(5)在接头两端用大的定位焊,在接头内用断续的定位焊•(6)向着大的定位焊或完工焊缝的方向焊接•(7)用分段退焊法•(8)远离接地以减小电弧后吹,朝向接地以减小电弧前吹•(9)将电缆连接至焊缝两端•(10)将电缆缠绕在工件周围,其电流方向应能产生抵销电弧偏吹的磁场•(11)在接头末端加熄弧板•除会产生气孔外,电弧偏吹还会导致飞溅、咬边、成型不好并降低焊接熔深。第三章金属连接及切割工艺2011-11-12•1.2气体保护电弧焊(GMAW)•这里要讨论的工艺是气体保护电弧焊,简写为GMAW。它是美国焊接学会所给出的一种工艺,也就是我们常说的熔化极惰性气体保护电弧焊MIG。通常它是用作一种半自动工艺,但也可作为机械化和自动化工艺来应用,因此它很适合于焊接机器人来操作。•气体保护电弧焊是通过焊枪连续不断的送丝,由焊丝和工件之间产生的电弧的热量将母材和焊丝熔化,从而达到焊接的目的。图3.10描述了这一焊接工艺的基本过程。•气体保护电弧焊很重要的一个特点是焊接过程的保护气体也是由焊枪输送的,这些气体有惰性的,也有非惰性的。惰性气体如氩、氦可用于某些焊接当中,它们可单独使用,也可混合使用,或与其它非惰性气体如氮气、氧气或二氧化碳混合使用。多数气体保护电弧焊使用二氧化碳作为保护气体,因为与惰性气体相比,它价格较为便宜。第三章金属连接及切割工艺2011-11-12•气体保护电弧焊的电极是实芯焊丝,实芯焊丝缠绕成不同规格尺寸盘或卷,美国焊接学会给出了它们的标识方法,是以字母ER打头,后面有二到三个数字,然后是连字符S,最后是一个数字,见图3.11。•字母ER代表焊丝既可用作电极,也可用作填充金属,或仅用作填充金属(对其它焊接工艺而言)。二到三个数字表示焊缝金属的最小抗拉强度,单位为千磅每平方英寸。因此,与手工电弧焊一样,“70”就表示填充金属的最小抗拉强度为70,000磅每平方英寸(PSI)。字母S表示为实芯焊丝,连字符后的最后一个数字表示电极的化学成分,说明了其操作特性以及焊缝的性能。典型的气体保护电弧焊电极均增加脱氧剂如锰、硅和铝等,从而避免了气孔的发生。例如:ER70S-6•虽然焊丝没有药皮,但在不用时,也需妥善保管最重要的一点是要确保焊丝干净。如果把焊丝随便堆放,它将会受到灰尘、油、湿气、打磨飞灰以及其它存在于焊接车间介质的污染。因此,在不用时,焊丝必须贮存在原塑料包装或原运输包装内,如果一卷焊丝已经装在焊机上,当较长时间不用时,应加盖保护。第三章金属连接及切割工艺2011-11-12•气体保护电弧焊的电源与手工电弧焊的电源不同,它不是恒流电源,而是我们所说的恒压电源、或平特性电源,也就是说,气体保护电弧焊的焊接是在设定的电压下,通过焊接过程中电流的变化来完成的。气体保护焊通常采用直流反接(DCEP),当用这种类型的电源和送丝机构配合时,就可以组成半自动、机械或全自动的焊接方法。•正如所看见的那样,这种设备较手工电弧焊所使用的设备要复杂一些。一个完整的配置包括电源、送丝机构、保护气体以及通过柔性电缆连接在送丝机构上的焊枪,这根柔性电缆可以焊丝和保护气体。焊工可以通过在电源上调节电压,在送丝机构上调节送丝速度,以来设置焊接参数。当送丝速度增加,焊接电流也随之增加。焊丝的熔化率与焊接电流成适当的比例,这实际上是由送丝速度所控制的。•值得一提的是这种电源是平特性电源。这种特性允许实现半自动工艺功能,也就是说焊工不必象手工电弧焊焊工那样控制填充金属的送进。换句话说,这种系统被称为“自调节平特性”系统。这种特性是因为焊枪与工件的相对位置的微小变动会引起焊接电流的明显的增大或减小。第三章金属连接及切割工艺2011-11-12•从图3.13中可以看见,当焊枪靠近工件时会使电阻减小从而使焊接电流立刻增大,立刻将焊丝多熔化一些,使电弧长度和电流恢复到设定值。这减小了焊工操作对焊接特性的影响,使该方法对操作人员不敏感,因此操作容易掌握。•如果改变设备的调节机置,将导致操作特性的极大变化。首先所关注的是熔化金属从电极端部穿过电弧区到达母材的过渡方式。对于气体保护焊,有四种基本的过渡方式,它们是射流过渡(spray)、熔滴过渡(globular)、脉冲过渡(pulsedarc)和短路过渡(short-circuiting)。•图3.14给出了四种过渡方式中的三种。它们的特性完全不同以至几乎认为是四种独立的焊接方法。每