人教版初中数学教师教案在数学中,直线上的一点可以用来表示一个数。这条直线叫做数轴,它满足以下条件:任意一点都可以代表数字0,代表原点;通常规定直线从原点向右(或向上)为正,向左(或向下)为负;选择适当的长度作为单位长度。来看看人教版初中数学老师的教案吧!欢迎咨询!人教版初中数学教师教案1一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组的概念可以从以下几个方面理解:(1)组成不等式组的不等式必须是一元一次不等式;(2)从数量上看,不等式的个数必须是两个或两个以上;(3)每个不等式在不等式组中的位置并不固定,它们是并列的.二.一元一次不等式组的解集及解不等式组:在一元一次不等式组中,各个不等式的解集的公共部分就叫做这个一元一次不等式组的解集。求这个不等式组解集的过程就叫解不等式组。解一元一次不等式组的步骤:(1)先分别求出不等式组中各个不等式的解集;(2)利用数轴或口诀求出这些解集的公共部分,也就是得到了不等式组的解集.三.不等式(组)的解集的数轴表示:一元一次不等式组知识点1.用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号的画实心原点,无等号的画空心圆圈;2.不等式组的解集,可以在数轴上先画同各个不等式的解集,找出公共部分即为不等式的解集。公共部分也就各不等式解集在数轴上的重合部分;3..我们根据一元一次不等式组,化简成最简不等式组后进行分类,通常就能把一元一次不等式组分成如上四类。说明:当不等式组中,含有“≤”或“≥”时,在解题时,我们可以不关注这个等号,这样就这类不等式组化归为上述四种基本不等式组中的某一种类型。但是,在解题的过程中,这个等号要与不等号相连,不能分开。四.求一些特解:求不等式(组)的正整数解,整数解等特解(这些特解往往是有限个),解这类问题的步骤:先求出这个不等式的解集,然后借助于数轴,找出所需特解。一元一次不等式组考点分析(1)考查不等式组的概念;(2)考查一元一次不等式组的解集,以及在数轴上的表示;(3)考查不等式组的特解问题;(4)确定字母的取值。一元一次不等式组知识点误区(1)思维误区,不等式与等式混淆;(2)不能正确地确定出不等式组解集的公共部分;(3)在数轴上表示不等式组解集时,混淆界点的表示方法;(4)考虑不周,漏掉隐含条件;(5)当有多个限制条件时,对不等式关系的发掘不全面,导致未知数范围扩大;(6)对含字母的不等式,没有对字母取值进行分类讨论。人教版初中数学教师教案相关文章:★★★★★★★★★★人教版初中数学教师教案2应用二元一次方程组——鸡兔同笼教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。过程与方法目标:经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。情感态度与价值观目标:1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.2.通过鸡兔同笼,把同学们带入古代的数学问题情景,学生体会到数学中的趣;进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。难点:确立等量关系,列出正确的二元一次方程组。教学流程:课前回顾复习:列一元一次方程解应用题的一般步骤情境引入探究1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?(1)画图法用表示头,先画35个头将所有头都看作鸡的,用表示腿,画出了70只腿还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿四条腿的是兔子(12只),两条腿的是鸡(23只)(2)一元一次方程法:鸡头+兔头=35鸡脚+兔脚=94设鸡有x只,则兔有(35-x)只,据题意得:2x+4(35-x)=94比算术法容易理解想一想:那我们能不能用更简单的方法来解决这些问题呢?回顾上节课学习过的二元一次方程,能不能解决这一问题?(3)二元一次方程法今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?(1)上有三十五头的意思是鸡、兔共有头35个,下有九十四足的意思是鸡、兔共有脚94只.(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;鸡足有2x只;兔足有4y只.解:设笼中有鸡x只,有兔y只,由题意可得:鸡兔合计头xy35足2x4y94解此方程组得:练习1:1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=152.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.三、合作探究探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?找出等量关系:解:设绳长x尺,井深y尺,则由题意得x=48将x=48y=11。所以绳长4811尺。想一想:找出一种更简单的创新解法吗?引导学生逐步得出更简单的方法:找出等量关系:(井深+5)×3=绳长(井深+1解:设绳长x尺,井深y尺,则由题意得3(y+5)=x4(y+1)=xx=48y=11所以绳长48尺,井深11尺。练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B).归纳:列二元一次方程解决实际问题的一般步骤:审:审清题目中的等量关系.设:设未知数.列:根据等量关系,列出方程组.解:解方程组,求出未知数.答:检验所求出未知数是否符合题意,写出答案.四、自主思考探究3:用长方形和正方形纸板作侧面和底面,做成如图中竖式和横式的两种无盖纸盒。现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少只,恰好使库存的纸板用完?解:设做竖式纸盒X个,横式纸盒y个。根据题意,得x+2y=10004x+3y=2000解这个方程组得x=200y=400答:设做竖式纸盒200个,横式纸盒400个,恰好使库存的纸板用完。练习3:上题中如果改为库存正方形纸板500,长方形纸板1001张,那么,能否做成若干只竖式纸盒和若干只横式纸盒后,恰好把库存纸板用完?解:设做竖式纸盒x个,做横式纸盒y个,根据题意y不是自然数,不合题意,所以不可能做成若干个纸盒,恰好不库存的纸板用完.归纳:五、达标测评1.解下列应用题(1)买一些4分和8分的邮票,共花6元8角,已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?解:设4分邮票x张,8分邮票y张,由题意得:4x+8y=6800①y-x=40②所以,4分邮票540张,8分邮票580张(2)一项工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天的工作量。现在知道在施工期间雨天比晴天多3天。问这项工程要多少天才能完成分析:由于工作总量未知,我们将其设为单位1晴天一天可完成雨天一天可完成解:设晴天x天,雨天y天,工作总量为单位1,由题意得:总天数:7+10=17所以,共17天可完成任务六、应用提高学校买铅笔、圆珠笔和钢笔共232支,共花了300元。其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?分析:铅笔数量+圆珠笔数量+钢笔数量=232铅笔数量=圆珠笔数量×4铅笔价格+圆珠笔价格+钢笔价格=300解:设铅笔x支,圆珠笔y支,钢笔z支,根据题意,可得三元一次方程组:将②代入①和③中,得二元一次方程组4y+y+z=232④0.6×4y+2.7x+6.3z=300⑤解得所以,铅笔175支,圆珠笔44支,钢笔12支七、体验收获1.解决鸡兔同笼问题2.解决以绳测井问题3.解应用题的一般步骤七、布置作业教材116页习题第2、3题。x+y=352x+4y=94x=23y=12绳长的三分之一-井深=5绳长的四分之一-井深=1-y=5①①-②,得-y=1②-y=5①-y=5①-y=5①X=540Y=580y-x=3②x=7y=10x+y+z=232①x=4y②0.6x+2.7y+6.3z=300③X=176Y=44Z=12人教版初中数学教师教案3一、教学目标知识与技能了解数轴的概念,能用数轴上的点准确地表示有理数。过程与方法通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。情感、态度与价值观在数与形结合的过程中,体会数学学习的乐趣。二、教学重难点教学重点数轴的三要素,用数轴上的点表示有理数。教学难点数形结合的思想方法。三、教学过程(一)引入新课提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。(二)探索新知学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?学生活动:画图表示后提问。提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。提问3:你是如何理解数轴三要素的?师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。(三)课堂练习如图,写出数轴上点A,B,C,D,E表示的数。(四)小结作业提问:今天有什么收获?引导学生回顾:数轴的三要素,用数轴表示数。课后作业:课后练习题第二题;思考:到原点距离相等的两个点有什么特点?