圆的对称性2教案教案是教师设计和安排教学内容、教学步骤、教学方法等的实践性教学文件。为了顺利有效地开展教学活动,根据课程标准、教学大纲和教材要求以及学生的实际情况,以课时或课题为单位。下面是网友整理的《圆2的对称性》部分精选教案。希望你能有所收获!圆的对称性2教案1一、教学目标知识与技能知道圆是轴对称图形,理解圆有无数条对称轴,并能正确找出圆的对称轴,能根据圆的对称轴确定圆心。过程与方法通过对圆的对称性的探究过程,提高动手操作能力,发展空间观念。情感、态度与价值观体会数学与生活的联系,提升学习数学的兴趣。二、教学重难点重点感受圆的对称性,会找圆的对称轴。难点确定一个圆的圆心的方法。三、教学过程(一)导入新课复习:带领学生复习什么是轴对称图形。组织学生列举一些生活中常见的轴对称图形。由上节课学习的圆,引出圆的对称性的探究。(二)讲解新知1.圆的对称性教师组织学生以同桌之间交流的方式,利用准备好的学具圆形卡片,通过折一折,探究圆是不是轴对称图形,如果是,又有几条对称轴,圆的对称轴有什么特点。学生通过探究发现:将圆沿直径对折,正好两边完全重合,所以圆是轴对称图形,且圆有很多条对称轴。师生总结:圆是轴对称图形,圆的直径所在的直线是对称轴,圆有无数条对称轴。圆的对称轴经过圆心。2.对称性的再理解带领学生回忆所学习过的所有平面图形,并通过大屏幕展示,例如:正方形、长方形、三角形、等边三角形、等腰三角形、梯形、等腰梯形、平行四边形……组织学生以数学小组为单位,判断哪些是轴对称图形?分别有多少对称轴?并填写书上表格。学生汇报,教师总结:针对较难理解的平行四边形,教师进行整体展示,讲解平行四边形不是轴对称图形。3.圆心的确定组织学生思考如何确定一个圆的圆心,并提供学具圆形卡片,组织学生小组讨论。讨论结束后,教师找同学汇报结果。师生总结:将圆对折两次,两次对折的折痕有一个交点,交点即为圆心。(三)课堂练习找出下列图形的对称轴。针对较难理解的平行四边形,教师进行整体展示,讲解平行四边形不是轴对称图形。3.圆心的确定组织学生思考如何确定一个圆的圆心,并提供学具圆形卡片,组织学生小组讨论。讨论结束后,教师找同学汇报结果。师生总结:将圆对折两次,两次对折的折痕有一个交点,交点即为圆心。(三)课堂练习找出下列图形的对称轴。(四)小结作业小结:通过这节课的学习,你有什么收获?作业:找一找生活中还有哪些轴对称图形?并数一数它的对称轴有几条,之后与父母分享。四、板书设计圆的对称性2教案2教学目标(一)教学知识点(二)1.圆的旋转不变性.2.圆心角、弧、弦之间相等关系定理.(二)能力训练要求1.通过观察、比较、操作、推理、归纳等活动,发展空间观念、推理能力以及概括问题的能力.2.利用圆的旋转不变性,研究圆心角、弧、弦之间相等关系定理.(三)情感与价值观要求培养学生积极探索数学问题的态度及方法.教学重点圆心角、弧、弦之间关系定理.教学难点“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明.教学方法指导探索法.教具准备投影片两张第一张:做一做(记作§3.2.2A)第二张:举反例图(记作§3.2.2B)教学过程Ⅰ.创设问题情境,引入新课[师]我们研究过中心对称图形,我们是用什么方法来研究它的,它的定义是什么?哪位同学知道?[生]用旋转的方法.中心对称图形是指把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫中心对称图形.这个点就是它的对称中心.[师]圆是一个特殊的圆形,通过前面的学习,同学们已经了解到圆既是一个轴对称图形又是一个中心对称图形.那么,圆还有其他特性吗?下面我们继续来探讨.Ⅱ.讲授新课[师]同学们请观察老师手中的两个圆有什么特点?[生]大小一样.[师]现在老师把这两个圆叠在一起,使它俩重合,将圆心固定.将上面这个圆旋转任意一个角度,两个圆还重合吗?[生]重合.[师]通过旋转的方法我们知道:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形,对称中心为圆心.[师]我们一起来做一做.(出示投影片§3.2.2A)按下面的步骤做一做:1.在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下.2.在⊙O和⊙O'上分别作相等的圆心角∠AOB和∠A'O'B'(如下图示),圆心固定.注意:在画∠AOB与∠A'O'B'时,要使OB相对于OA的方向与O'B'相对于O'A'的方向一致,否则当OA与OA'重合时,OB与O'B'不能重合.3.将其中的一个圆旋转一个角度,使得OA与O'A'重合.[生]教师叙述步骤,同学们一起动手操作.[师]通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.[生甲]由已知条件可知∠AOB=∠A'O'B'.[生乙]由两圆的半径相等,可以得到∠OAB=∠OBA=∠O'A'B'=∠O'B'A'.[生丙]由△AOB≌△A'O'B',可得到AB=A'B'.[生丁]由旋转法可知[师]很好.大家说得思路很清晰,其实刚才丁同学说到一种新的证明弧相等的方法——叠合法.[师生共析]我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O'A'重合时,由于∠AOB=∠A'O'B'.这样便得到半径OB与O'B'重合.因为点A和点A'重合,点B和点B'重合,所以和重合,弦AB与弦A'B'重合,即,AB=A'B'.的理由是[师]在上述操作过程中,你会得出什么结论?[生]在等圆中,相等的圆心角所对的弧相等,所对的弦相等.[师]同学做得很好,这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.下面,我们一起来看一看命题的证明.(学生互相讨论交流,学生口述,教师板书)如上图所示,已知:⊙O和⊙O'是两个半径相等的圆,∠AOB=∠A'O'B'.求证:,AB=A'B'.证明:将⊙O和⊙O'叠合在一起,固定圆心,将其中的一个圆旋转,一个角度,使得半径OA与O'A'重合,∵∠AOB=∠A'O'B',∴半径OB与O'B'重合.∵点A与点A'重合,点B与点B'重合,∴∴与重合,弦AB与弦A'B'重合.,AB=A'B'.上面的结论,在同圆中也成立.于是得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.[师](通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.(出示投影片§3.2.2B)[生]如下图示,虽然∠AOB=∠A'O'B',但AB≠A'B',下面我们共同想一想.[师]如果我们把两个圆心角用①表示;两条弧用②表示;两条弦用③表示.我们就可以得出这样的结论:在同圆或等圆中也相等①相等如果在同圆或等圆这个前提下.将题设和结论中任何一项交换一下,结论正确吗?你是怎么想的?请你说一说.(同学们互相交流、讨论)[生甲]如果将上述题设①和结论②换一下,结论仍正确.可以通过旋转法或叠合法得到证明.[生乙]如果将上述题设①和结论③互换一下,结论也正确,可以通过证明全等或叠合法得到.[师]好,通过上面的探索,你得到了什么结论?[生]在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.注意:(1)不能忽略“在同圆或等圆中”这个前提条件,否则,丢掉这个前提,虽然圆心角相等,但所对的弧、弦、弦心距不一定相等.(2)此定理中的“弧”一般指劣弧.(3)要结合图形深刻体会圆心角、弧、弦、弦心距这四个概念和“所对”一词的含义.否则易错用此关系.(4)在具体应用上述定理解决问题时,可根据需要,择其有关部分.如“在同圆中,等弧所对的圆心角相等”“在等圆中,弦心距相等的弦相等”等等.例如,下图中的∠1=∠2,有的同学认为∠1对AD,∠2对BC,就推出了AD=BC,显然这是错误的,因为AD、BC不是“等圆心角对等弦”的弦.[师]下面我们通过练习巩固本节课的所学内容.课本P97随堂练习1、2、3Ⅲ.课时小结[师]通过这一节的学习,在得出本节结论的过程中,回忆一下我们使用了哪些研究图形的方法?(同学们之间相互讨论、归纳)[生]本节采用的方法有多种,利用折叠法研究了圆是轴对称图形;利用圆的轴对称性研究了垂径定理及其逆定理;利用旋转的方法得到了圆的旋转不变性,由圆的旋转不变性,我们探究了圆心角、孤、弦、弦心距之间相等关系定理„„Ⅳ.课后作业课本P98习题3.3:1、2Ⅴ.活动与探究(略)板书设计§3.2.2圆的对称性一、圆的旋转不变性圆是中心对称图形,对称中心为圆心.二、圆心角、弧、弦之间相等关系定理.证明:略三、随堂练习四、课时小结五、课后作业圆的对称性2教案3一、教材分析:(一)教材的地位与作用本节课是圆的性质的重要体现,是圆的轴对称性的具体化,也是今后证明线段等、角等、弧等、垂直关系的重要依据,同时也为圆的计算和作图提供了方法和依据,所以它在教材中处于举足轻重的位置。另外,本节课通过“实验--观察--猜想——合作交流——证明”的途径,进一步培养学生的动手能力,观察能力,分析、联想能力、与人合作交流的能力,同时利用圆的轴对称性,可以对学生进行数学美的教育。因此,掌握垂径定理对学生更好地认识现实世界,建立空间观念、培养推理论证能力具有十分重要的作用。(二)教学目标根据《数学课程标准》对这部分知识的要求及本课的特点,结合学生的实情,本节课的教学目标确定为:(1)知识与技能目标使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。(2)过程与方法目标在实验过程中,培养学生观察、联想、猜测、推理、探索发现新知识的能力和创新思维、创新想象的能力。通过分组训练、深化新知,共同感受收获的喜悦。(3)情感与态度目标在解决问题过程中,培养学生敢于面对挑战和善于克服困难的意志,鼓励学生大胆尝试,勇于探索,从中获得成功的经验,充分享受数学之美,从而体验学习数学的乐趣。知识与技能目标固然重要,对于本节课:过程与方法和情感与态度更重要,因为这部分是几何教学的重点,是由实验几何向论证几何的过渡,过程与方法可以帮助学生学会认识事物、分析问题的方法;有良好的情感态度能培养好的学习兴趣,养成好的学习习惯。(三)教学重点和难点教学重点:垂径定理及其应用。(由于垂径定理的题设与结论比较复杂,很容易混淆遗漏,所以,对垂径定理的题设与结论区分是难点之一,同时,对定理的证明方法“叠合法”学生不常用到,是本节的又一难点。)教学难点:对垂径定理题设与结论的区分及定理的证明方法。突出重点、突破难点的关键:创设具有启发性的问题情境,通过学生动手操作,多媒体生动直观地演示,让学生经历“提出问题——探究讨论——归纳发现”的过程,在这个过程中,要给学生在充足的活动时间,使学生在积极思维的状态下参与探究性学习。而理解垂径定理的关键是圆的轴对称性。二、教学方法的选择与应用本节课我采用实验操作,直观演示,合作交流等方法指导学生动眼观察、动手操作、动脑思考、动口表述,让学生从实践中获取知识,并通过讨论来深化对知识的理解。同时采用多媒体辅助教学和实物演示,直观生动地反映图形特点。三、教学模式为了实现教学目标,优化教学过程,本节课设计了六个教学环节:课前准备(制作实验器材、完成预习提纲)、创设问题情境引入新课、讲授新课、课堂小结、创新探究、课后作业。四、教学过程第一环节课前准备活动内容:(提前一天布置)1.每人制作两张圆纸片(最好用16K打印纸)2.预习课本P88~P92内容设计意图:通过第1个活动,希望学生能利用身边的工具去画图,并制作图纸片,培养学生的动手能力;在第2个活动中,主要指导学生开展自学,培养良好的学习习惯。预期存在的问题:学生在制作图纸片时,有时