石油化工设备腐蚀与防护武汉分公司机动处2013-08内容•腐蚀的基本介绍•炼油装置基本腐蚀类型•设备防腐蚀策略应遵循的主要原则腐蚀定义ISO标准定义:金属与环境间的物理-化学的相互作用,造成金属性能的改变,导致金属、环境或由其构造的一部分技术体系功能的损坏。腐蚀的分类1.腐蚀反应机理划分:化学腐蚀和电化学腐蚀;2.腐蚀环境划分:大气腐蚀、水腐蚀、土壤腐蚀、化学介质腐蚀;3.腐蚀的形貌划分:均匀腐蚀和局部腐蚀4.局部腐蚀的多种形态•电偶腐蚀(双金属腐蚀)•点腐蚀(孔蚀)•晶间腐蚀•缝隙腐蚀•选择性腐蚀•磨损腐蚀•应力腐蚀•腐蚀疲劳•氢损伤(氢脆、氢鼓泡、氢腐蚀)电化学腐蚀电化学腐蚀是指金属表面与离子导电的介质(电解质溶液)发生电化学作用而产生的破坏。任何一种按电化学机理进行的腐蚀反应至少包含一个阳极反应和一个阴极反应,并通过金属内部的电子流和介质中的离子流形成闭路的原电池。在原电池中电位较负的部位(阳极)就遭受腐蚀,而电位较正的部位(阴极)就得到了保护,因此上述原电池也称腐蚀原电池。金属的电化学腐蚀就是腐蚀原电池作用的结果。通常可将腐蚀原电池分为微电池和宏电池两种。微电池是由金属变面许多微小的电极所组成的腐蚀电池,它的成因主要有:(1)金属化学成分的不均匀性;(2)金属金相组织的不均匀性;(3)金属表面膜的不完整性;(4)土壤微结构上的差异。7减薄机制失效机理形态部位盐酸局部常压塔顶、重整装置的加氢、重整后和再生部分电化学腐蚀局部海水和冷却水系统硫化物局部加氢装置、焦化装置、FCC、胺处理装置、酸性水处理装置和气体分离装置等二氧化碳局部蒸汽冷凝系统、FCC、硫酸局部硫酸烷基化装置、水处理系统氢氟酸局部氢氟酸烷基化装置磷酸局部水处理系统苯酚局部重油和脱蜡装置损伤机理与部位失效机理形态部位胺局部胺处理大气均匀系统保温层下坑装置和系统土壤腐蚀局部系统高温硫化(无氢)均匀蒸馏、焦化、FCC、加氢装置等高温硫化(有氢)均匀加氢装置环烷酸局部蒸馏装置高温氧化均匀加热炉9应力腐蚀开裂失效机理形态部位氯化物穿晶常压塔、有水的地方腐蚀开裂晶间、穿晶炭钢设备内部、由于残余应力造成连多硫酸晶间FCC、加氢装置、燃气系统胺开裂晶间胺处理装置氨开裂晶间氨工厂、中和剂浓缩HICSOHIC穿晶、鼓泡、平面湿硫化氢环境、蒸馏、FCC、加氢装置、焦化装置、气体回收等,焊缝与母材硫化物穿晶同上氢鼓泡平面同上氰化氢平面、穿晶FCC10金相组织改变和环境失效失效机理形态部位高温氢晶间、脱炭加氢装置、重整装置晶粒增长局部炉管石墨化局部FCC反应器σ相脆化无特点FCC再生器、铸造炉管和管架475℃脆断无特点铁素体钢回火脆化无特点加氢装置反应器液态金属脆化局部原油中的汞在蒸馏装置渗炭局部有焦的炉管脱炭局部高温炉管金属粉尘化局部加氢炉、焦化炉、气体涡轮机选择性浸出局部水冷系统的耐酸管道外部腐蚀局部乙烯装置11机械失效失效机理形态部位机械疲劳局部转动部件、管腐蚀疲劳局部蒸汽炉顶盖、锅炉炉管气蚀局部叶轮背面、泵的入口机械损伤N/A没有保护的部位超载N/A热膨胀、工艺条件变化超压N/A工艺条件变化、脆断局部低温条件、钢材变质蠕变局部炉管和炉内件应力断裂局部炉管热震动局部燃烧中流体变化热疲劳局部焦炭塔炼油装置面临处境•原料劣质化趋势严重:随着石油资源的深度开采以及进口高硫、高酸原油的不断增加,原油劣质化趋势日趋明显。一方面,随着国内原油资源的深度开采,原油的密度和酸值不断提高,而且在三次采油过程中加入许多助剂,使得炼油装置的腐蚀加剧。另一方面,随着世界原油供应市场的变化,加工高硫、高酸劣质原油可以获得较好的经济效益,因而中国石化进口劣质原油的量逐年增加。这两方面导致部分装置的腐蚀严重,长周期安全生产面临很大压力。•部分装置原设计不能满足原料劣质化要求。•部分重点装置材质升级不彻底:有的装置进行了装置适应性改造,但由于技术、费用等方面的限制,设备、管线的材质升级不彻底,仍然存在薄弱环节,对加工劣质原油的适应性差。•装置长周期安全运转的要求二、炼油装置典型腐蚀类型原油中的腐蚀性介质及其对装置的腐蚀性•原油中的腐蚀介质原油中除存在碳、氢元素外,还存在硫、氮、氧、氯以及重金属和杂质等,正是原油中存在的非碳氢元素在石油加工过程中的高温、高压、催化剂作用下转化为各种各样的腐蚀性介质,并与石油加工过程中加入的化学物质一起形成复杂多变的腐蚀环境。–硫化氢的腐蚀:原油中的含硫化合物包括活性硫和非活性硫,在原油加工过程中,非活性硫可向活性硫转变。炼油装置的硫腐蚀贯穿一次和二次加工装置,对装置产生严重的腐蚀,腐蚀类型包括低温湿硫化氢腐蚀、高温硫腐蚀、连多硫酸腐蚀、烟气硫酸露点腐蚀等。–环烷酸的腐蚀:原油中的部分含氧化合物以环烷酸的形式存在,在原油加工过程中,对常减压等装置高温部位产生严重的腐蚀,因而加工高酸原油的常减压装置应该进行全面材料升级以应对环烷酸的腐蚀问题。–氮化物的腐蚀:原油中的含氮化合物经过二次加工装置高温、高压和催化剂的作用后可转化为氨和氰根,在催化裂化、焦化、加氢裂化流出物系统形成氨盐结晶,严重可堵塞设备和管线,而且会引起垢下腐蚀。氰化物还会造成催化裂化吸收、稳定、解吸塔顶及其冷凝冷却系统的均匀腐蚀、氢鼓泡和应力腐蚀开裂。–无机盐的腐蚀:原油中的无机氯和有机氯经过水解或分解作用,在一次和二次加工装置的低温部位形成盐酸复合腐蚀环境,造成低温部位的严重腐蚀。腐蚀类型包括均匀腐蚀和不锈钢材料的氯离子应力腐蚀开裂。–原油中的重金属化合物在原油加工过程中残存于重油组分中,进入二次加工装置,引起催化剂的失效,严重影响装置的正常运转。原油中的重金属V在原油加工过程中会在加热炉炉管外壁形成低熔点化合物,造成合金构件的的熔灰腐蚀。当原料或原料油含硫大于0.5%,酸值大于0.5mgKOH/g,氮大于0.1%时,在加工过程中会造成设备及其工艺管道较为严重的腐蚀。1、高温硫腐蚀高温硫化物的腐蚀环境是指240℃以上的重油部位硫、硫化氢和硫醇形成的腐蚀环境。典型的高温硫化物腐蚀环境存在于蒸馏装置常、减压塔的下部及塔底管线,常压重油和减压渣油换热器等;流化催化裂化装置主分馏塔的下部,延迟焦化装置主分馏塔的下部及其管线等。在这些高温硫化物的腐蚀环境部位。在加氢裂化和加氢精制等临氢装置中,由于氢气的存在加速H2S的腐蚀,在240℃以上形成高温H2S+H2腐蚀环境,典型例子是加氢裂化装置的反应器、加氢脱硫装置的反应器以及催化重整装置原料精制部分的石脑油加氢精制反应器等。高温硫腐蚀机理在高温条件下,活性硫与金属直接反应,它出现在与物流接触的各个部位,表现为均匀腐蚀,其中硫化氢的腐蚀性很强。化学反应如下:H2S+FeFeS+HS+FeFeSRSH+FeFeS+不饱和烃高温硫腐蚀速度的大小,取决于原油中活性硫的多少,但是与总硫量也有关系。高温硫影响因素•温度的影响当温度升高时,一方面促进活性硫化物与金属的化学反应,同时又促进非活性硫的分解。温度低于120℃时,非活性硫化物未分解,在无水情况下,对设备无腐蚀。但当含水时,则形成炼油厂各装置低温轻油部位的腐蚀,特别是在相变部位(或露点部位)造成严重的腐蚀。温度在120-240℃之间时,原油中活性硫化物未分解。温度在240-340℃之间时,硫化物开始分解,生成硫化氢,对设备也开始产生腐蚀,并且随着温度的升高腐蚀加剧。温度在340-400℃之间时,硫化氢开始分解为H2和S,S与Fe反应生成FeS保护膜,具有阻止进一步腐蚀的作用。但在有酸存在时(如环烷酸),FeS保护膜被破坏,使腐蚀进一步发生。温度在426-430℃之间时,高温硫腐蚀最为严重。温度大于480℃时,硫化氢几乎完全分解,腐蚀性开始下降。高温硫腐蚀,开始时速度很快,一定时间后腐蚀速度会恒定下来,这是因为生成了硫化铁保护膜的缘故。而介质的流速越高,保护膜就容易脱落,腐蚀将重新开始。•环烷酸的影响环烷酸形成可溶性的腐蚀产物,腐蚀形态为带锐角边的蚀坑和蚀槽,物流的流速对腐蚀影响更大,环烷酸的腐蚀部位都是在流速高的地方,流速增加,腐蚀率也增加。而硫化氢的腐蚀产物是不溶于油的,多为均匀腐蚀,随温度的升高而加重。当两者的腐蚀作用同时进行,若含硫量低于某一临界值,其腐蚀情况加重。亦即环烷酸破坏了硫化氢腐蚀产物,生成可溶于油的环烷酸铁和硫化氢,使腐蚀继续进行。若硫含量高于临界值时,硫化氢在金属表面生成稳定的FeS保护膜,则减缓了环烷酸的腐蚀作用。也就是我们平常所说的,低硫高酸比高硫高酸腐蚀还严重。•高温硫腐蚀主要采用材料防腐,炼油装置塔体高温部位可选用碳钢+0Cr13或0Cr13Al之类的铁素体不锈钢复合板。0Cr13有较好的耐蚀性,且膨胀系数与碳钢相近,易于制造复合板。•塔内件则可选用0Cr13、碳钢渗铝等,换热器的管束可选用碳钢渗铝和0Cr18Ni9Ti。•塔体材料也可选择碳钢+0Cr18Ni10Ti复合板,其耐硫腐蚀和环烷酸腐蚀性要优于0Cr13或0Cr13Al,且加工性好。管线使用Cr5Mo防腐是适宜的,对硫腐蚀严重部位可选用321,对于转油线弯头等冲刷腐蚀严重的部位,可选用316L。催化分馏塔的E201管束变形照片•催化分馏塔进料段塔壁腐蚀减薄照片•焦化装置加热炉辐射室弯头局部腐蚀穿孔某炼油厂加工高硫高酸原油,2005年04月发现焦化装置加热炉辐射室弯头局部腐蚀穿孔,炉管材质为Cr5Mo,介质为减压渣油。腐蚀原因分析为高温硫腐蚀+冲蚀。温度高,原料硫含量高造成高温硫腐蚀,处理量逐年上升,导致管内流体线速度增加,冲蚀严重。焦化装置加热炉辐射室弯头腐蚀形貌•措施:(1)弯头贴补板。(2)检修更换弯头。(3)加强管线超声波测厚。•硫磺回收装反应炉燃烧器的腐蚀某炼厂硫磺回收反应炉燃烧器腐蚀图,中间的瓦斯烧嘴的腐蚀产物已将气孔堵死,剩余厚度最小为12mm(原设计为31.5mm),外壁上积有约5mm厚的黑色垢层,瓦斯烧嘴气孔被带有一定金属光泽的黑色熔融物堵塞,酸性气烧嘴叶片最薄处只剩1.8mm。腐蚀形态为典型的高温硫腐蚀。反应炉燃烧器的腐蚀形貌二、低温硫腐蚀原油中存在的硫以及有机硫化物在不同条件下逐步分解生成的H2S等低分子的活性硫,与原油加工过程中生成的腐蚀性介质(如HCl、NH3、CO2等)和人为加入的腐蚀性介质(如乙醇胺、糠醛、水等)共同形成腐蚀性环境,在装置的低温部位(特别是气液相变部位)造成严重的腐蚀。典型的有蒸馏装置常、减压塔顶的HCl+H2S+H2O腐蚀环境;催化裂化装置分馏塔顶的HCN+H2S+H2O腐蚀环境;加氢裂化和加氢精制装置流出物空冷器的H2S+NH3+H2O腐蚀环境;干气脱硫装置再生塔、气体吸收塔的RNH2(乙醇胺)+CO2+H2S+H2O腐蚀环境等。HCl-H2S-H2O的腐蚀与防护•HCl-H2S-H2O的腐蚀部位与形态主要存在于常减压蒸馏装置塔顶及其冷凝冷却系统、温度低于120℃的部位,如常压塔、初馏塔、减压塔顶部塔体、塔盘或填料、塔顶冷凝冷却系统。一般气相部位腐蚀较轻,液相部位腐蚀较重,气液相变部位即露点部位最为严重。•防护措施及材料选用腐蚀影响因素碳钢表现为均匀腐蚀,0Cr13表现为点蚀,奥氏体不锈钢表现为氯化物应力腐蚀开裂,双相不锈钢和钛材具有优异的耐腐蚀性能,但价格昂贵。在加强“一脱三注”工艺防腐的基础上,制造的换热器、空冷器在保证施工质量的前提下,采用碳钢+涂料防腐的方案也可保证装置的长周期安全运转。2盐酸(HCl+H2O)的腐蚀环境及设计选材△气体氯化氢一般没有腐蚀性,但是遇水形成盐酸(HCl+H2O)后腐蚀性就变得很强。盐酸在很大浓度范围内对碳钢和低合金钢会引发全面腐蚀和局部腐蚀,对铁素体或马氏体不锈钢主要是局部腐蚀(点蚀或坑蚀),对奥氏体不锈钢则产生氯离子应力腐蚀开裂。△盐酸腐蚀的严重程度随着盐酸浓度和温度的增加而增加。工艺装置中盐酸的腐蚀破坏通常伴随着露点腐蚀。含有水蒸汽和氯化氢的油气在塔顶及塔顶冷凝冷却系统中冷凝时,初凝的液相水中腐蚀介质发生浓缩现象,产生较大的酸性(低PH值),加快了腐蚀速率。△防止盐酸的腐蚀破坏应以工艺防腐为主,材料防腐为辅,并