角的平分线的性质教案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

角的平分线的性质教案角平分线定义是指从一个角的顶点画出一条射线,将该角分成两个相同的角。这条射线叫做这个角的角平分线。以下是网友整理的关于角平分线性质的教案精选。希望你能有所收获!角的平分线的性质教案1设计理念数学课堂是以学生为中心的活动的课堂,通过学生动手实践、自主探索、合作交流的过程,达到知识的构建,能力的培养和意识的创新及情感的陶冶,这也是实现数学教育从“文本教育”回归到“人本教育”。教材分析及教法《角平分线的性质》是人教版八年级数学上第十一章《全等三角形》第三节第一课时。它是在学生已经掌握全等三角形的性质与判定基础上继续探究的一节新授课。学好本节内容是进一步学习轴对称和直角三角形知识的基础,在教材中起承前启后的作用。本课以教师为指导,以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以探究式教学法和直观演示法为主的教学方法,注重数学与生活的联系,创设一系列有启发性、挑战性的问题情景激发学生学习的兴趣,引导学生用数学的眼光思考问题、发现规律、验证猜想。学情分析及学法因为学生课前已经自学了本节课的内容对本节课的知识已经有了初步的了解,并且已经掌握了角分线的定义,全等三角形等知识。这样有利于他们类比学习本节内容。初二学生有一定的观察分析能力、逻辑思维能力和数形结合的能力,但对于角分线的特点具有的性质及逆定理比较模糊。在教学中通过分组讨论和多媒体演示能有效解决上述问题。本节力图转变学生以往只是认真听讲、单纯记忆、练习巩固的被动学习方式。引导学生在动手实践、自主探索、合作交流活动中发现新知和发展能力,与此同时教师通过适时的点拨使观察、猜想、验证、归纳、推理贯穿整个学习过程。教学目标知识与技能:掌握角平分线的性质和判定,并能利用这些方法解决简单的数学问题和实际问题.过程与方法:经历探究角平分线性质判定的过程,发展学生合情推理能力和演绎推理力.了解角平分线的性质在生活、生产中的应用,进一步发展学生的推理证明意识和能力。情感、态度、价值观:结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心。教学重难点重点:角平分线性质和判定的应用.难点:运用角平分线性质和判定证明及解决实际问题.课时安排2课时教学设计策略依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。教学效果预测本课设计力求让学生参与知识的发现过程,体现以学生为主体,以促进学生发展为本的教学理念,变知识的传授者为学生自主探求知识的引导者、指导者、合作者。并利用多媒体,直观教具演示,营造一个声像同步,能动能静的教学情景,给学生提供一个探索的空间,促使学生主动参与,亲身体验探索过程,从而锻炼思维、激发创造,优化课堂教学。努力做到由传统的数学课堂向实验课堂转变,使学生真正成为学习的主人,培养了学生的素质能力,达到了良好的教学效果。教学过程一、导入新课创设情境,提出问题如图,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500米。这个集贸市场应建在何处(在图上标出它的位置,比例尺为1:20000)?问题:1、集贸市场建于何处?比例尺为1:20000是2、比例尺为1:20000是什么意思?什么意思?你能在图上找出S点的位置吗?〖答案〗1、这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2、在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,?这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm?表示实际距离200m的意思.作图如下:第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了.〖设计意图〗通过实际问题的引入,让学生从生活中发现数学问题,激发学生的求知欲.通过对数学问题的讨论使学生知道数学来源于生活,生活离不开数学,激发学生学习的积极性.二、探索新知1、问题:角平分线性质逆命题是否正确呢?你能B给出证明吗?E〖答案〗已知:如图,QD⊥OA,QE⊥OB,点D、E为垂足,QD=QE.Q求证:点Q在∠AOB的平分线上证明:∵QD⊥OA,QE⊥OBOD∴∠QEO=90°,∠QDO=90°又∵QD=QE,OQ=OQ∴Rt△QEO≌Rt△QDO∴∠QOE=∠QOD∴点Q在∠AOB的平分线上.〖设计意图〗通过该问题让学生确信逆命题的正确性,并让学生试口述该性质,加深学生的印象.这个提问设置为学生区分用哪个性质给出了说明,同时又验证了学生猜想的正确性,使学生获得成功的体验.2、揭示课题,整理概念,板书点在角的平分线上.用符号语言表示为:角的内部到角的两边距离相等的∵QD⊥OA,QE⊥OB,QD=QE.A∴点Q在∠AOB的平分线上.角的平分线上的点到角的两边的距离相等.∵QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上∴QD=QE.总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,?使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,?我们可以直接利用性质解决问题.3、出示例题如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.〖点拨方法〗点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,?也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,?根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.∵BM是△ABC的角平分线,点P在BM上.A∴PD=PE.D同理PE=PF.NP∴PD=PE=PF.即点P到三边AB、BC、CA的距离相等.BF探究:连接AP,请问AP平分∠BAC吗?(能否给出简单证明).〖设计意图〗该例题运用了角平分线的两个性质,起到巩固新知的作用.三、课堂反馈训练1、已知:如下图,在△ABC的外角∠CBDl1和∠BCE的平分线相交于点F,求证:点Fl3S2在∠DAE的平分线上.S4S1l2AS3GBCNMDEFEMC〖点拨方法〗要证明点在角平分线上,那就是要证明点到角两边的距离相等,那应该用用什么方法呢?〖答案〗证明:过点F作FG⊥BC,FM⊥AE,FN⊥AD垂足分别为G、M、N.∵FB、FC分别为∠CBD、∠BCE的角平分线∴FG=FN,FG=FM∴FN=FM∴点F在∠DAE的平分线上.2、如下图所示,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:()A.一处B.两处C.三处D.四处〖点拨方法〗如上图此题可以用教科书115页第6题的方法来解决,但没有“三条公路围成的一块平地上修建”的限制,因此满足要求的地址共有四处.〖答案〗D.〖设计意图〗引导学生对问题进行变式,既培养学生发散性思维能力,同时也培养学生的辨别能力,让学生学会比较,养成良好的学习习惯,培养严谨的思维能力.四、小结归纳今天你又学到了哪些新的知识?有什么收获?〖设计意图〗发挥学生的主体意识,培养学生的归纳能力.五、堂堂清练习1、必做题:教科书第22页习题11.3第3、5题.2、选做题:(1)与相交的两条直线距离相等的点在:()A.一条直线上B.两条互相垂直的直线上C.一条射线上D.两条互相垂直的射线上〖答案〗B3、备选题:如图,在△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E、F,下面给出四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B、C两点的距离相等;④到AE、AF距离相等的点,到DE、DF的距离也相等,其中正确的结论有:()A.1个B.2个C.3个D.4个〖答案〗DAFECD六、板书设计教学反思在设计这节课时,我想如果在一节课的时间里把性质和判定学完,那只能是把本节课设计为探究课,而对于性质与判定的应用只能放在下一节课,于是我把这节课设计为探究课,把对角平分线的性质与判定定理的探索作为本节课的重点。本节课的教学方法是启发探究式。为了增加课堂密度和教学效果以及突破本节课的教学难点,我运2、遵循从特殊到一般再到特殊的认知规律,精心创设问题和反馈练习,由浅入深、循序渐进地引导学生在获取知识的过程中体验成功的喜悦。用几何画板和幻灯片制作了课件,以增加学生对角平分线上任意一点的理解。在学生探究角平分线的性质与判定时,我分别创设了情境,一是为了给学生的探究搭建平台,培养学生的动手操作能力。二是为使学生感受到数学知识来源于实际并应用于实际。同时也体现了新课程标准下的课堂应体现学生的主体性。教学评价1、本节课以学生已学知识为载体,以展示思维过程为主线,以探索猜测为途径,突出能力培养和数学思想方法的渗透。2、遵循从特殊到一般再到特殊的认知规律,精心创设问题和反馈练习,由浅入深、循序渐进地引导学生在获取知识的过程中体验成功的喜悦。角的平分线的性质教案2一、教学目标知识与技能进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题。过程与方法通过对“角平分线性质”的探究,提高分析问题、解决问题的能力。情感态度与价值观通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。二、教学重难点重点证明角平分线的性质和判定。难点灵活运用角平分线性质解决问题。三、教学过程(一)设置情境问题,搭建探究平台问题l:习题1.8的第1题作三角形的三个内角的角平分线,你发现了什么?能证明自己发现的结论一定正确吗?于是,首先证明“三角形的三个内角的角平分线交于一点”.当然学生可能会提到折纸证明、软件演示等方式证明,但最终,教师要引导学生进行逻辑上的证明。(二)展示思维过程,构建探究平台已知:如图,设△ABC的角平分线.BM、CN相交于点P,证明:P点在∠BAC的角平分线上.证明:过P点作PD⊥AB,PF⊥AC,PE⊥BC,其中D、E、F是垂足.∵BM是△ABC的角平分线,点P在BM上,∴PD=PE(角平分线上的点到这个角的两边的距离相等).同理:PE=PF.∴PD=PF.∴点P在∠BAC的平分线上(在一个角的内部,且到角两边距离相等的点,在这个角的平分线上).∴△ABC的三条角平分线相交于点P.在证明过程中,我们除证明了三角形的三条角平分线相交于一点外,还有什么“附带”的成果呢?(PD=PE=PF,即这个交点到三角形三边的距离相等.)于是我们得出了有关三角形的三条角平分线的结论,即定理三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.下面我通过列表来比较三角形三边的垂直平分线和三条角平分线的性质定理问题2分析:本例需要运用前面所学的多个定理,而且将计算和证明融合在一起,目的是使学生进一步理解、掌握这些知识和方法,并能综合运用它们解决问题.第(1)问中,求AC的长,需求出BC的长,而BC=CD+DB,CD=4cIn,而BD在等腰直角三角形DBE中,根据角平分线的性质,DE=CD=4cm,再根据勾股定理便可求出DB的长.第(2)问中,求证AB=AC+CD.这是我们第一次遇到这种形式的证明,利用转化的思想AB=AE+BE,所以需证AC=AE,CD=BE.(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB.∴DE=CD=4cm(角平分线上的点到这个角两边的距离相等).∵∠AC=∠BC∴∠B=∠BAC(等边对等角).∵∠C=90°,∴∠B=1/2×90°=45°.∴∠BDE=90°—45°=45°.∴BE=DE(等角对等边).在等腰直角三角形BDE中BD=2DE2.=42cm(勾股定

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功