钢中氢、氮、氧的来源及其控制对策高海潮摘要:比较了国内外钢中氢、氮、氧的水平,叙述了国外对纯净钢要求不断提高的过程,分析了钢中氢、氮、氧的来源,讨论了氢和氧的变化规律、吹氧过程中氮的变化以及碳和氧的关系,提出了减少钢污染的有效方法,总结出净化钢液的主要技术措施。关键词:纯净钢来源钢污染控制措施SourcesandControlMeasuresofHydrogen,NitrogenandOxygeninSteelGaoHaichao(MaAnshanIron&SteelCo.Ltd.)Abstract:Thecontentsofhydrogen,nitrogenandoxygeninsteelproducedinourcountryandothercountriesarecomparedinthispaper.Therequirementsforcleansteelareincreased.TheanalysisonsourcesofH,N,Oinsteelhavebeencarriedout.TheruleofchangesinHandOcontents,Nchangeinoxygen-blowingprocessandtherelationshipbetweenCandOhavebeendiscussedherein.Theeffectivemeasuresofdecreasingsteelpollutionareputforward,andthemaintechnologyformlotensteelcleaningisthenconcluded.Keyworks:cleansteelsourcesteelpollutioncontrolmeasure1前言1996年,我国的钢产量突破1亿t,成为世界第一产钢大国。但与世界主要发达产钢国家相比,在品种结构、产量质量、技术装备、能源消耗、生产成本等方面还有不少的差距,因此,我们还没有成为世界钢铁强国[1]。世界上发达的钢铁工业国家都经历了同样的发展历程。即先是粗钢在量上按年份绝对增长,到达一定高峰后调整结构,转而追求品种质量。当品种质量占据市场的绝对份额后,由于激烈的竞争,相继在高附加值的精品上下功夫。人们在20世纪50年代前,主要致力于脱磷、脱硫、脱氧。随现代铁水预处理技术的发展,“三脱”(脱磷、脱硫、脱硅)在生产上已实现了最经济成本[2]。人们可以把普通钢的硫磷比一般标准≯0.040%再降至更低的水平。这样磷、硫的危害在下降的同时,氢、氮、氧对钢的危害则愈加显露出来。钢中氢的致裂,氮的发脆,全氧与钢中夹杂物的紧密关系,在分析钢的缺陷时已形成了共识。20世纪50年代后,人们着手深入研究对钢的脱氢、脱氮、脱氧。到目前为止从某种意义上讲,对氢、氮、氧的控制和要求,即反映出整条工艺路线的综合水平又反映出一个工厂所能生产高附加值产品档次的高低。2我国钢中氢、氮、氧的控制与外国先进水平的现状对钢中氢、氮、氧要求,我国已有一些部门和行业标准,也包括企业内控标准,在一些特殊用途的钢上做出了规定。如马钢快速客车轮钢中含氢(w)≤2×10-6,重载货车轮钢中含氢(w)≤3.5×10-6;特钢企业生产的轴承钢对全氧提出明确的要求。但在我国的国家标准(GB)中,除了众所周知的对优质碳素结构钢提出过钢中含氮的(w)≯80×10-6以外,到目前为止,根据已有的资料,还没有见到将钢中氢、氮、氧作为有害元素控制的新标准发布或颁布。我国有炉外精炼装置,经真空处理的钢不足钢产量的1/10。以4大钢铁企业为例。由于各家产品不同,工艺不同,精炼装置的不同,氢、氮、氧波动幅度较大。即便以我国先进的拥有真空处理装备的炼钢厂与国外相比,在这方面仍有较大差距(见表1、表2)。表1我国钢中氢、氮、氧控制的先进水平及现状(w)×10-6单位[H][N]T[O]宝钢0.7~1.510~2712~28武钢≤2≤2543~75太钢1.5~3.325~5525~33马钢1.5~3.540~5022~38表2国外钢中氢、氮、氧控制的先进水平及现状(w)×10-6品种[H][N]T[O]车轮轮箍≤230~40≤15重轨≤230~40<20耐蚀结构钢≤1.610~40≤30超低碳薄板≤4010~30(D≤40μm)优硬线材40~6020~30(D≤20μm)汽车钢板≤25≤20中厚钢板<1.5≤40合金钢棒材<210~20≤10管线钢≤35≤30冷墩钢≤35<30表1、表2是我们收集到的资料,以及对国内外产品的检验报告,经整理列出的一些代表钢种,仅供参考。3结净钢或纯净钢的出现及发展中国的钢铁市场是国际市场的一部分。中国钢铁企业不能生产的或实物质量上尚存不足的产品,还得从国外大量进口,这个量每年仍有1000~1500万t。要实现从量变到质变,值得一提的是国外生产的所谓“洁净钢”(Clean-steel)或“纯净钢”(Purity-steel),在对钢的纯净度上出现了质的飞跃。通常这种钢是指[S]、[P]、[H]、[N]、T[O]含量(w)总和≯100×10-6。当然还有一种观点就是还得强调夹杂物的形态与尺寸。对不同的钢号有不同的要求,比如滚珠轴承钢,要求夹杂物D<15μm,轮胎钢帘线要求夹杂物D<10μm。除此之外,随炼钢技术的不断提高,超纯净钢的概念也出现在世界冶金的论坛上[3]。德国预测:钢水中可能达到的元素含量为(w)/×10-6:[C]≤20、[P]≤15、[S]≤5、[N]≤15、T[O]≤10、[H]≤0.7,总含量≤65.7×10-6;日本报告:到2000年,在批量生产的超纯净钢中,上述几种有害元素的含量可控制在(w)/×10-6,[C]≤16、[P]≤12、[S]≤4、[N]≤14、T[O]≤5、[H]≤0.5,总含量≤51.5×10-6(见图1、图2)。图1日本商业生产纯净钢[C]、[P]、[S]的计划图2日本商业生产纯净钢[H]、[N]、[O]的计划4影响钢中氢、氮、氧的因素与其控制4.1钢中氢、氮、氧的来源在常压下进行钢的冶炼,气体除铁水中已溶解的外,还可以通过各种原辅料及炉气进入钢液。当进入钢中的气体量超过冶炼过程脱碳沸腾的脱气量时,钢中气体的含量就增加[4]。各种不同的炼钢炉,终点钢水中都含有一定量的氢、氮、氧,实测和统计情况见表3。表3三种炼钢炉终点钢水中[H]、[N]、[O]的含量(w)×10-6冶炼方法[H][N][O]平炉3~840~60(C=0.10%)400~600电炉4~770~140造还原渣<100转炉3~520~40(C=0.10%)300~5004.1.1氢的来源氢气在炉气中的分压力很低,大气中氢的分压力为0.053Pa。因此钢中的氢主要由炉气中的水蒸汽的分压力来决定的(见图3)。氢进入钢液的主要途径是:通过废钢表面的铁锈(XFeO.rFe3O4.2H2O);铁合金中的氢气;增碳剂、脱氧剂、复盖剂、保温剂、造渣剂(Ca(OH)2)、沥青和焦油中的水份;未烤干的钢包、中间包、中注管、汤道;钢锭模的喷涂料;结晶器渗水以及大气中的水份与钢水或炉渣作用而进入钢中。图3冶炼时钢液中氢和氧的变化规律4.1.2氮的来源氮气在炉气中的分压力很高,大气中氮的分压力大体保持在7.8×104Pa。因此钢中的氮主要是钢水裸露过程中吸入并溶解的。电炉炼钢,包括二次精炼的电弧加热,加速了气体的解离,故[N]含量偏高;平炉治炼时间长增加了氮含量;转炉复吹控制不当,氮氩切换不及时也会增加氮的含量(见图4);铁合金、废钢铁和渣料中的氮也会随炉料带入钢水。图4全程吹氧时钢中含氮量的变化1.氮流量0.25Nm3/min.t终点w(C)-0.065%;2.氮流量0.2Nm3/min.t终点w(C)-0.037%;3.氮流量0.19Nm3/min.t终点w(C)-0.048%;4.氮流量0.13Nm3/min.t终点w(C)-0.032%;5.氮流量0.09Nm3/min.t终点w(C)-0.079%;4.1.3氧的来源氧在各种炼钢炉冶炼终点时都以一定量存在于钢水中,氧是我们供给的这是不言而喻的。因为炼钢过程首先是氧化过程,脱[P]、脱[S]、脱[Si]、脱[C]都需要向铁水供氧。但随着炼钢过程的进行,尽管工艺操作千变万化,可是炼钢炉内熔池中钢液的[C]、[O]的关系却有着共同的规律性。即随着[C]的逐步降低,[O]却在逐步增高,[C]和[O]有着相互对应的平衡关系。(见图5)。图5吹炼终点时钢液中碳含量与氧含量之间的关系1.氧气顶吹转炉(圆点)2.平炉金属中氧含量范围3.钢液中的碳-氧平衡线4.2控制氢、氮、氧的主要对策4.2.1在炼钢生产的全过程中,建立起洁净钢质的思想观念我公司铁前生产的格局已定,以2500m3大高炉为首的新系统,拥有先进的料场、烧结,在2号大高炉建设时将进一步完善。钢后的轧机,以H型钢、棒材、高线、中板、车轮组成先进轧机和优特产品的优势,潜力很大。钢承铁启材,现在又是我公司的弱项,弱项就更应予以扶持、保护。不断提高钢的内在质量,是我们开发各种新产品的基础。所谓洁净钢的生产不要局限于狭义的概念,要有广义的思想。不要眼睛只盯着某一道工序上,而应该在整个系统上下功夫。传统的炼钢热力学原理至今未变,但动力学条件则在不断的创新。人们在炼钢的工艺过程及设备上努力找出最佳的配合条件。从现实情况看,不要认为洁净钢离我们还远,各个企业都可以因地制宜就现有的条件,通过严格的科学管理,按标准执行操作。首先是预防为主,制定本单位洁净钢的生产目标,使产品实物质量提上新水平。4.2.2生产含氢、氮、氧较低的洁净钢,炉外精炼是关键生产含氢、氮、氧较低的洁净钢,就我国钢铁企业的现状来看,应以炉外精炼为关键,增添或完善必要的设备。对设备功能的选择,应保证最终所生产产品的质量要求。从粗放型转至集约型的生产经营,在大型钢铁企业中,优化炼钢生产工艺流程,必须坚持“三位一体”的方针,走铁水预处理→顶底复吹转炉→带真空的炉外精炼→连铸之道路。以我公司为例,尽快上马铁水预处理工程;在三钢LF工位炉上增加VD工位;淘汰一钢平炉建95t转炉,改造SKF炉与转炉匹配,用圆坯连铸机生产车轮轮箍用的坯料,都是提高钢质出高附加值产品乃至精品,必须解决的主要的问题。4.2.3炼钢生产防止污染的主要技术措施(1)炼钢生产所用的铁水、废钢、各种造渣材料及辅料、铁合金同样需要“精料”。铁水必须要经过预处理,入炉前必须扒渣,硫的含量应控制在100×10-6以下。废钢必须在料场经过分选、切割加工,严禁含有害元素的废钢入炉。造渣材料如活性石灰等,要新鲜、干燥,出窑到入炉的时间要短;辅料如碳粉等要不存堆、袋装化、定量周转。铁合金的块度和烘烤温度必须达标。氧气、氩气的纯度也必须绝对保证。现代炼钢仍靠这些基本条件支撑,只不过是各家钢厂在管理上有很大的差别,而这些差别最终则反映在钢的内在质量上。(2)钢水在熔池中的脱碳沸腾是消除污染关键环节之一,脱碳速度的快与慢,沸腾的强与弱有一个最佳点[5]。当氩气资源满足要求时,顶底复吹转炉可由过去的前程底吹氮改为全程吹氩;出钢时采用长寿的出钢口或快速更换出钢口技术,出钢口始终维护良好,做到不散流;使用性能可靠的下渣检测技术和挡渣技术,尽可能使钢渣分离,阻止炼钢炉终点高氧化性炉渣进入钢包。这些要求不属于高、难操作,但严格认真执行工艺规范操作后,可以减少钢水受到污染。由图6我们可以看出,随钢包渣中(FeO)+(MnO)含量的增加,钢水中全氧的含量也增加。图6钢包渣中(FeO)%+(MnO)%对钢全氧的影响(3)所有用于盛装钢水的普通钢包、精炼包及连铸中间包都必须清洁干燥,做到红热包时才能受钢水。所有与钢水相接触的耐火材料必须性能稳定,抗侵蚀性能好。要按标准采集相关数据,使之处于受控状态。应为精炼炉提供优质钢水,而不要增加额外的负担,使钢水在精炼过程中的时间缩短。如钢水升温时间长则会增加气体的含量,破了真空不出站反回去加热则更加重钢水的污染。由于有了钢包炉的炉外精炼,使炼钢工艺发生了变化。如采用无铝出钢技术[6],可以降低钢中[N]。从