5.4电路系统对任意激励的零状态响应-卷积积分1.卷积积分定理:任一LTIS对任意激励信号f(t)的零状态响应应该等于该激励信号与电路系统冲击响应的卷积积分。即:)()()()()()()(00thtfdhtfdthftyttttzs5.4.1卷积积分定理:0()lim()ntPt))()((thtPnn)(lim)(ththnn0Pn(t)tLTISthn(t)1证明:因为任意信号f(t)可以分解为宽度为的无穷多个窄脉冲信号的迭加0okf(t)fn(t)yn(t)ynk(t)y(t)t()fk()()()()()nnnknftfkPtkfkPtk()()()()()nnnknytfkhtkfkhtk,,dkd积分求和任意信号:dtftf)()()(任意信号产生的零状态响应:dthftyzs)()()(响应迭加:当时,)0(因为对于一切物理可实现系统(因果系统),t0时,h(t)=0,而由于时,。所以积分上限应为t;又如果输入的信号是单边的,则积分下限应为t0(或0)。t0)(thttzsdthfty0)()()(2.物理意义:LTIS在任意时刻t对任意激励的零状态响应等于从激励函数开始作用的时刻()到指定时刻()区间内,无穷多个幅度不同,连续出现的冲击响应的总和。0tt这就是说,输入f(t)从t=t0到t这段时间内电路的连续作用,可以用一序列冲击信号对电路激励去等效,每个冲击信号)()(ktkf的强度为,相应的响应)()(fkf为,就是输入冲击信号的瞬间,而t可以理解为观察这个输入作用引起响应的瞬间。因为时刻作用的信号,到t时刻才观察到输出,这之间时间差值即为。即可以理解电路对输入作用的记忆时间。因为不能为负,所以积分上限只能取到t,而不能到∞。其实电路上的这种卷积积分只不过是数学上卷积的特例,并赋予物理意义。)()(thf0ttt2.利用卷积积分求电路系统零状态响应的方法:方法步骤:(1)求出系统的冲击响应h(t)(2)代公式进行卷积积分,或利用卷积性质,求得yzs(t)解:1.(1)求得电路的冲击响应:因为电路KCL:)(3)()()()()(3tUetUeLRthttidttdiRLttLRLL6R2HLiL(t)()ft例1:已知图示电路,(1)输入为A电流,求响应iL(t)。(2)输入为A电流,求响应i’L(t)2()teUt)2(2)2(tUet)()(3)1(3]21[6632)()()(32020203)(0tUeeeeeedeedeedhtftitttttttttttL2.)2()(3)(')2(3)2(tUeetittL(2)卷积求yzs(t)例2.已知一LTI网络,冲击响应为,求当输入信号为矩形波时的零状态响应。11f(t)t()100()()()1(1)()ttttzsytfhtdedeUt(2)求U(t-1)激励时的响应:根据延时不变性可得:)1()1()()1(2tUetytzs)()(tUetht解:因为输入信号f(t)=U(t)-U(t-1),(1)当U(t)激励时,其响应为yzs1(t)(3)求f(t)激励时的响应:根据LTIS的线性性:)1()1()()1()()()()1(21tUetUetytytyttzszszs3.LTIS的完全响应:利用卷积求得系统零状态响应,再与系统零输入响应叠加,即求得系统的完全响应为:(设系统特征根互异)nittzpszzpdthfeAtytytyi10)()()()()(4.卷积的图形解法(1).卷积的图形解释:卷积实际上是一种数学工具,我们可以用图解法来清楚的说明其含义。设:(1)褶叠:(将横轴t→,对褶过去)(2)平移(3)相乘积分)(hh(t)h()()h)(th()()ftf00001-1/22t-2-2111(a)(b)(c)(d)ta1tr1ttt(2).卷积积分积分限的确定原则:若函数的非零值左边界(即函数不为0的最小值)分别为tl1和tl2,其非零值右边界(即最大的值)分别为tr1和tr2,则积分下限为max[tl1,tl2],上限为min[tr1,tr2]。即积分下限取它们左边界的最大者,而积分上限取它们右边界中的最小者。)()(21tff和f()f())(th00001-1/2t-2-1/2(a)(b)(d)(e)ttttt00(c)(f)tt)(tht-2)(th-1/2t-2t1f())(th1-1/2t-2t1t-2tf())(th1-1/2f()f())(h3/2123-1/215/169/1612t121t31t321tt3ttttdtthtf21216144)(211)()(112133()()1()2416tfthttd1224324)(211)()(tttdtthtf0)()(thtf()()0ftht(a)(b)(c)(d)(e)(){00(){tAfthtBe其余例:求如图(a)(b)所说函数f(t)和h(t)的卷积积分。解:(1)写出表达式:t0t00taAaf(t)t00h(t)tBBe-t(a)(b)Aaf(t)0Aaf(t)0t(C)(d)(2)计算卷积积分:Aaf(t)t00h(t)tBBe-t(a)(b)Aaf(t)0Aaf(t)0t(C)(d))(*)()(thtftyⅰ.t0,无重叠。ⅱ.0≤t≤a,tl1=0,tl2=-∞,选tr1=a,tr2=t)()(thf和0()0()()()(1)ttttytfhtdABABedeⅲ.t≥a,tl1=0,tl2=-∞,tr1=a,tr2=t选tl1=0,tr=0)(0)()1()(ataateeABdABety一.卷积代数1.交换律:)()()()(1221tftftftf1212()()()()ftftfftdddt=-则-=令t2121()()()()()ftfftdftft5.4.3卷积的性质证明:)]()([)()()]()([321321tftftftftftf)()()()()]()([)(3121321tftftftftftftf3.结合律:证明:)]()([)(])()]()[(])()]()[()(])()([)()]()([321321321321321tftftfddtfffddtfffdtfdfftftftf2.分配律:二.卷积的微分和积分:1.微分:)()()()()]()([212121tfdttdfdttdftftftfdtddttdftfddttdffdtffdtdtftfdtd)()()()()()()]()([21212121证明:同理可证第二等式2.积分tttdftfdftfdff)()()()()]()([122121ttttttdftfddffddffdff)()(])([)(])()([)]()([11212121证明:3.高阶导数和多重积分设:)]()([)(21tftfty则有:)]()([)()(2)(1)(tftftyjiji推论:tdfdttdftftfty2121)()()()()(例:tttUttUtdttUdttdtUtU)()(*)()(*)()(*)(三、与冲击函数或阶跃函数的卷积1、与冲击函数的卷积:)()(*)(tfttf证明:)()()()()()()(tfdtfdtfttf或写为)()()()(tfdtf抽样性推论:)()(*)(00ttftttf2、与阶跃信号的卷积:tdftftUtUtf)()()(*)()()(tttdfdftdftUdtdtUtf)()(*)()(*)()(*)(证明:)(*)(*)(*)(2)2(tUetttUtUett例1、计算)()(313)()()()()()()()()()()()()]([)(22)(2222)2(tUeetUetUedtUeUetUetUetUetttUetUetttUtUettttttttttt解:原式例2、图示系统是由几个子系统组成的,各个子系统的冲击响应分别为:若激励试求总系统的零状态响应)3()()(),1()(tUtUthtthGD)1()()(tUtUtf)(tyhD(t)hD(t)hD(t)hG(t)f(t)h1h2h3y(t)h4解(1)求h(t):对因果系统而言,串联系统的冲击响应等于各串联子系统的冲击响应卷积(结合律);并联系统的冲击响应等于各并联子系统的冲击响应相加(分配律)123400()[]*:()[()(1)(1)*(1)]*[()(3)][()(1)(2)]*[()(3)][()(3)]*()[()(3)]*(1)[()(3)]*(2)()*()(hthhhhhtttttUtUttttUtUtUtUttUtUttUtUttftttftt即)()[()(3)][(1)(4)][(2)(5)]()()(1)(2)(3)(4)(5)(2)():()()*()htUtUtUtUtUtUthtUtUtUtUtUtUtytythtft求)6()6()3()3(2)()]1()1()([*)]5()4()3()2()1()([)]1()([*)]5()4()3()2()1()([)()(*)()(*)(tUttUtttUtUtttUttttttdUUtUtUtUtUtUtUdtdtydttfdttdhtfthtt作业:1、2、3、4、5、6、10、12、13、14、15、16、17