254Vol.25No.420038JournalofUniversityofScienceandTechnologyBeijingAug.20032002–11–05,36No.50144005208090[1,2]90NKK3#[3]2090[4~7]11.1(Birdboro,BB)208035t/a135mm×135mm×12000mm5.5mm~13mm10mm12mm108m/s90m/s,214m2,80t/h1.2.12025mm13508mm12760mm13700mm..1.3,6.280~7.118MJ/m3(101.3kPa)10000~16000m3/h2~15kPa135mm×135mm×12000mm25~6001050~11500.70%22.11)1)1)1)1)2)2)1),1000832)063000NOx0.879GJ/t67%160NOx40×106().NOxTF741.5;TM924.4•320•20034[8].NOx[8](1)(2)(3)2.2[9](a)(b)(c)(d)(e)(f)33.1(MSI)..();(100).30min.(COCO2N2O2)..:3.2(1).1~41Table1Relationalparametersofcoalgasinthetestingperiod2002–09–17–21:35:0/m3678990/(m3h1)102482002–09–18–01:30:0/m3638000/(m3t1)128.9/45/(m3m3)1.99/kPa9.0/(m3m3)1.23/(MJm3)6.826COCO2O2CH4H2N2CmHnH2O51.216.12.61.41.526.50.7—46.114.52.31.31.423.90.69.92()Table2Compositionofcolgas%Vol.25No.4•321•(2).NOxSOx5583.36(951±30)(1078±28)(1156±25)(1108±15)79.5t/h25min88.8t/h9002003Table3Processparametersoftheheatingfurnaceinthetestingperiod/951/1156/942/1078/1000/(m3h1)13322/(m3h1)/kPa2.9/167/118//kPa9.0/kPa20~50/189/(th1)Q235/kg1631/t135mm×135mm×1180mm/mm6.5/489/min25/1108—/%100/mm0.999/mm0.341/%0.6601.31024819579.53184Table4Heatequalibriumoftheheatingfurnaceinthetestingperiod/(MJt1)/%/(MJt1)/%Q1879.8775.66Q'1756.5965.05Q2242.8720.88Q'240.013.44Q337.283.21Q'30.000.00Q42.980.25Q'456.154.83———Q'58.510.73———Q'6138.4711.91———Q'719.581.68———Q'8116.3010.00———Q27.392.36Q1163.0100.00Q'1163.0100.05()Table5Mostlyingredientofexhaustgas/%/CO2O2CON2NOxSO218.80.20.081.039.93×1046.0×104971.0424.80.02.874.939.91×1046.6×1041601.0421.80.11.477.939.92×1046.3×1041291.046Table6Mostlyindexoftechnologyeconomy/(th1)/(th1)/(kgm2h1)/(GJh1)79.588.8519.269.95/(GJt1)/(m3t1)/%0.879128.967.21•322•2003465.05%67.21%75.66%20.88%96.54%11.91%,10.0%3.44%NOxSO2CO106()40×106NOx4(1)(2)0.879GJ/t67.21%88.8t/h160(3)NOxSO2CO106()40×106NOx1,,,.[J].,1998,33(6):572,.[J].2001,23(4):593HongfengBi,AjayLAgrawal.Studyofautoignitionofnaturalgasindieselenvironmentsusingcomputationalfluiddynamicswithdetailedchemicalkinetics[J].Com-bustFlame,1998,11(3):254,.[J].,2002,24(2):395,,,.[J].,1998,8:36,,,.[J].,1999,34(2):557,,,.(HTAC)[J].,2002,24(4):68,.[J].2003,25(2):1359,,,.(HTAC),[J].,2002,21(3):203ApplicationoftheHigh-TemperatureLow-OxygenCombustionTechnologyinTanggangHigh-SpeedWireMillWUGuangliang1),LIShiqi1),GUOHanjie1),ZHURong1),YANGXiang1),LIShuanglai2),CHUJiandong2)1)MetallurgicalEngineeringSchool,UniversityofScienceandTechnologyBeijing,Beijing100083,China2)TanshanIronandSteelCoLtd,Tangshan063000,ChinaABSTRACTInordertoachievehighefficiency,energysavingandlowcontaminationemissionforareheatingfurnacewiththehigh-temperaturelow-oxygencombustiontechnology,aregenerativecombustionsystemofthefur-nacewasdesignedbythewayofnumericalsimulation,andasetofpatenttechnologieswasdevelopedbythetheoryofmetallurgicalreactionengineering.AappliedresultofthepatenttechnologiesinTanggangHigh-SpeedWireMillindicatedthattheenergyconsumeis0.879GJ/t,thethermalefficiencyofthefurnaceexceeds67%,thetemperatureofemissionexhaustgasfromtheregeneratorisbelow160,andtheNOxcontentinexhaustgasislessthan40×106involumicfraction.KEYWORDShigh-temperatureaircombustion;regenerativecombustionsystem;lowNOxemission;heatingfur-naceofrollingsteel