书书书犐犆犛77.040.99犆犆犛犎24中华人民共和国国家标准犌犅/犜40281—2021钢中非金属夹杂物含量的测定极值分析法犇犲狋犲狉犿犻狀犪狋犻狅狀狅犳犮狅狀狋犲狀狋狅犳狀狅狀犿犲狋犪犾犾犻犮犻狀犮犾狌狊犻狅狀狊犻狀狊狋犲犲犾—犈狓狋狉犲犿狌犿犪狀犪犾狔狋犻犮犪犾犿犲狋犺狅犱20210820发布20220301实施国家市场监督管理总局国家标准化管理委员会发布目 次前言Ⅰ…………………………………………………………………………………………………………引言Ⅱ…………………………………………………………………………………………………………1 范围1………………………………………………………………………………………………………2 规范性引用文件1…………………………………………………………………………………………3 术语和定义1………………………………………………………………………………………………4 符号和缩略语5……………………………………………………………………………………………5 原理与应用6………………………………………………………………………………………………6 操作流程6…………………………………………………………………………………………………7 试验报告11…………………………………………………………………………………………………附录A(资料性) 非金属夹杂物尺寸(长度、直径或面积)极值计算公式13……………………………附录B(资料性) 钢材非金属夹杂物极值分析示例15……………………………………………………附录C(资料性) 冶炼过程铸态非金属夹杂物极值分析示例21…………………………………………犌犅/犜40281—2021前 言 本文件按照GB/T1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。本文件由中国钢铁工业协会提出。本文件由全国钢标准化技术委员会(SAC/TC183)归口。本文件主要起草单位:抚顺特殊钢股份有限公司、齐齐哈尔华工机床股份有限公司、江苏永钢集团有限公司、首钢集团有限公司、冶金工业信息标准研究院、钢铁研究总院、中国技术经济学会。本文件主要起草人:程丽杰、鞠新华、谷强、李继康、李涛、吴锦圆、颜丞铭、翟继龙、余超、孙继强。Ⅰ犌犅/犜40281—2021引 言 钢中大型非金属氧化夹杂物的存在会导致金属力学性能的下降,造成性能不合格。非金属夹杂物的试验方法标准如GB/T10561等采用比较法评定级别,级别与非金属夹杂物长度是呈指数递增,是非连续数据,很难与零件疲劳寿命相关联,而且检验到的非金属夹杂物偶然性大,数据离散。一些研究表明,极值分析法应用统计原理,对非金属夹杂物增加了检验次数,对数据进行统计学分析,可最大程度反映非金属夹杂物的分布状态,降低偶然性。极值分析法分析出的非金属夹杂物极值能更好体现钢材中存在的非金属夹杂物整体状态,数值连续可比,可建立与零件寿命的关联。极值分析法可供试验人员分析出钢中内生非金属夹杂物或第二相的最大值。一般情况下,可测量出钢试样中的最大氧化夹杂物。必要时,也可测定多种类型夹杂物的最大值,例如,同一组试样可分别测出其中的氧化物、硫化物、硅酸盐、点状非金属夹杂物,碳氮化钛等夹杂物的最大值。极值分析法也可用于测定其他显微组织的特征,比如球墨铸铁中的石墨球大小的极值,工具钢和轴承钢中的碳化物的最大颗粒度以及晶粒的最大直径。钢中外来夹杂物的分布特性不易预测,应采用其他无破坏性的检测方法,例如超声波探伤来确定。Ⅱ犌犅/犜40281—2021钢中非金属夹杂物含量的测定极值分析法1 范围本文件规定了钢中非金属夹杂物极值分析法的试样制备、夹杂物检验、极值计算、极值图绘制、数据有效性分析、差异性评估和试验报告等。本文件适用于钢材、钢锭和连铸坯中非金属夹杂物的极值分析。其他显微结构的特征值也可参照使用。本文件不适用于外来非金属夹杂物的极值分析。2 规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T10561 钢中非金属夹杂物含量的测定 标准评级图显微检验法GB/T13298 金属显微组织检验方法GB/T30067 金相学术语3 术语和定义GB/T30067界定的以及下列术语和定义适用于本文件。3.1极值分布 犲狓狋狉犲犿犲狏犪犾狌犲犱犻狊狋狉犻犫狌狋犻狅狀特定的面积或体积上所测量的最大夹杂物特征值狓的概率密度函数,符合式(1),则连续随机变数狓有一个二元参数(Gumbel)的最大值分布。犳(狓)=1δexp-狓-λδ()[]×exp-exp-狓-λδ()[]……………………(1)其中,式(1)的后半部分为累积分布函数,见式(2)。犉狓()=exp{-exp[-(狓-λ)/δ]}…………………………(2)在式(1)和式(2)中,狓代表最大费雷特(feret)直径,可为每个检验面积犃o中的最大夹杂物的尺寸(长度、直径、或面积),假定狔=狓-λδ…………………………(3)由式(3)则可推算出式(4)和式(5)。犉(狔)=exp[-exp(-狔)]…………………………(4)和狓=δ狔+λ…………………………(5)式中:λ———极值分布函数的定位参数(相当于起步的夹杂物尺寸);1犌犅/犜40281—2021δ———极值分布函数的尺度参数(l/δ相当于分布曲线的斜率,代表增值速度,δ越大,增值越快)。3.2约减变量 狉犲犱狌犮犲犱狏犪狉犻犪狋犲犚犲犱.犞犪狉狔从式(4)中可以看出,狔和概率密度函数有关系,即狔=犉(犘),犘为概率,则从式(4)中可以推出式(6):狔=-ln{-ln[犉(狔)]}=-ln(-ln犘)…………………………(6)3.3排序定位 狊狅狉狋犻狀犵狆狅狊犻狋犻狅狀所检测的犖个夹杂物尺寸数据点犡犻按升序进行的排列,其中,1≤犻≤犖,即:犡1≤犡2≤犡3≤犡4≤犡5……≤犡犻≤……≤犡犖则数列各个数据点犡犻的累计概率可用式(7)表示:犘犻=犻犖+1=犉(狔犻)…………………………(7)分数式犻犖+1表示累计概率,犉(狔犻)与各个数据点犡犻相互对应。3.4最大夹杂物尺寸(长度、直径或面积)的平均值 犪狏犲狉犪犵犲狅犳狋犺犲犫犻犵犵犲狊狋犻狀犮犾狌狊犻狅狀犱犻犿犲狀狊犻狅狀狊(犾犲狀犵狋犺狊,犱犻犪犿犲狋犲狉狊狅狉犪狉犲犪狊)珚犔所测的犖个最大夹杂物尺寸(长度犔、直径犇或面积犛)的算数平均值,计算公式见式(8):珚犔=1犖∑犖犻=1犔犻…………………………(8)直径或面积以犇或犛代替犔,以下式(9)、式(13)、式(19)、式(20)、式(21)相同。3.5最大夹杂物尺寸(长度、直径或面积)的标准差 狊狋犪狀犱犪狉犱犱犲狏犻犪狋犻狅狀狅犳狋犺犲犫犻犵犵犲狊狋犻狀犮犾狌狊犻狅狀犱犻犿犲狀狊犻狅狀狊(犾犲狀犵狋犺狊,犱犻犪犿犲狋犲狉狊狅狉犪狉犲犪狊)犛犱犲狏所测的犖个最大夹杂物尺寸的标准差,计算公式见式(9):犛犱犲狏={∑犖犻=1[(犔犻-珚犔)2]/(犖-1)}0.5…………………………(9)3.6参考面积 狉犲犳犲狉犲狀犮犲犪狉犲犪犃狉犲犳为预测最大夹杂物犔max的概率而任意选取的面积。 注:在本文件中选择:犃o=160mm2时,犃ref=160000mm2,另有规定者除外。3.7逆转周期 狉犲狋狌狉狀狆犲狉犻狅犱犜为了观测到长度等于或大于所规定的最大夹杂物长度的夹杂物,应对若干个试样抛光面进行观测。从统计上犜可按式(10)定义:犜=11-犘…………………………(10)在假定要测定的犃ref大于犃o的情况下,预计能观测到的最大夹杂物尺寸的犜也可用式(11)计算:2犌犅/犜40281—2021犜=犃ref犃o…………………………(11)示例:当犃o=160mm2,犃ref=160000mm2时,犜=1000。通过式(10)可推算出与之相对应的概率值为0.999(99.9%)。3.8矩量法极值分布参数 犲狓狋狉犲犿犲狏犪犾狌犲犱犻狊狋狉犻犫狌狋犻狅狀狆犪狉犪犿犲狋犲狉犫狔犿狅犿犲狀狋犿犲狋犺狅犱δmom,λmom用式(12)和式(13)来表示:δmom=犛犱犲狏槡6π…………………………(12)和λmom=珚犔-0.5772δmom…………………………(13)其中,下标mom表示依据矩形法评估的参数。3.9最大似然法极值分布参数 犲狓狋狉犲犿犲狏犪犾狌犲犱犻狊狋狉犻犫狌狋犻狅狀狆犪狉犪犿犲狋犲狉犫狔犿犪狓犻犿狌犿犾犻犽犲犾犻犺狅狅犱犿犲狋犺狅犱δML,λML基于参数δ和λ的最佳值,推测出获得夹杂物尺寸测量组概率的最大值。因为夹杂物极值分布根据双指数函数计算,则最大值求解最容易的方法是通过分布函数的对数函数,假定有特定的数组,则计算见式(14)和式(15):犔犔=∑犖犻=1ln[犳(狓犻,λ,δ)]…………………………(14)犔犔=∑犖犻=1犔犔犻=∑狀犻=1ln1δ()-狓犻-λδ()-exp(-狓犻-λδ)[]…………(15)犔犔的最大值宜通过数值分析计算得出,通过电子数据表或适当的电脑分析程序都可计算得出。参数δ和λ的数值从式(15)分析数据规划求和得出,分别被标为δML和λML。3.10预测夹杂物尺寸 狆狉犲犱犻犮狋犲犱犻狀犮犾狌狊犻狅狀犱犻犿犲狀狊犻狅狀狊狓犻测定出δML和λML的最佳值后,可根据式(16)预测不同概率下夹杂物长度的平均值:狓=δML犚犲犱.犞犪狉()+λML…………………………(16)3.11夹杂物尺寸的标准差 狊狋犪狀犱犪狉犱犱犲狏犻犪狋犻狅狀狅犳狋犺犲犻狀犮犾狌狊犻狅狀犛犈(狓)对于通过最大似然法计算得出的任何一个长度为狓的夹杂物,其标准差的计算见式(17):犛犈(狓)=δML(1.109+0.514狔+0.608狔2)/槡狀……………………(17)3.12夹杂物尺寸的95%置信区间 95%犮狅狀犳犻犱犲狀犮犲犻狀狋犲狉狏犪犾狊狅犳狋犺犲犻狀犮犾狌狊犻狅狀95%犆犔计算见式(18):95%犆犔=±2犛犈(狓)…………………………(18)3.13预测的最大夹杂物尺寸(长度、直径或面积) 狆狉犲犱犻犮狋犲犱犱犻犿犲狀狊犻狅狀狊(犾犲狀犵狋犺,犱犻犪犿犲狋犲狉狅狉犪狉犲犪)狅犳狋犺犲犫犻犵犵犲狊狋犐狀犮犾狌狊犻狅狀犔犿犪狓基于极值分布分析方法,预测到概率为犘的最大夹杂物尺寸的计算见式(19):3犌犅/犜40281—2021犔max=-δMLln-ln犘()+λML…………………………(19)当犜≥100时,式(19)可简化为式(20):犔max=δMLln(犜)+λML…………………………(20)注:在本文件中,如选定参考面积犃ref=160000mm2面积,犃o=160mm2,则逆转周期犜=1000。相对应的概率犘=0.999(99.9%),预测到的最大夹杂物尺寸的计算见式(21):犔max=6.91δML+λML…………………………(21)3.14最大夹杂物尺寸犔犿犪狓的95%置信区间 95%犮狅狀犳犻犱犲狀犮犲犻狀狋犲狉狏犪犾狊狅犳狋犺犲犫犻犵犵犲狊狋犻狀犮犾狌狊犻狅狀95%犆犔使用非常大的逆程周期来预测钢某一特定面积内所存在的最大夹杂物尺寸,给定或由式(10)计算得出预测概率犘,约减函数的计算见式(22),最大夹杂物尺寸的近似95%的置信区间由式(17)和式(18)给出。狔=-ln-ln犘()…………………………(22)犛犈狓()=δML(1.109+0.514狔+0.608狔2)/槡狀95%犆犔=±2犛犈(狓)注:在本文件中,选定参考面积犃ref=160000mm2面积,犃o=160mm2,则逆转周期犜=1000。相对应的概率犘=0.999(99.9%),预测到的最大夹杂物尺寸的标准差和95%的置信区间的计算分别见式(23)和式(24):犛犈狓()=5.80δML/槡狀…………………………(23)95%犆犔=±2犛犈狓()=±11.61δML/槡狀………………