2022年云南省高考数学(文科)真题(Word档含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2022年普通高等学校招生全国统一考试(云南卷)数学(文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合5{2,1,0,1,2},02ABxx∣„,则AB()A.0,1,2B.{2,1,0}C.{0,1}D.{1,2}2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差3.若1iz.则|i3|zz()A.45B.42C.25D.224.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.205.将函数π()sin(0)3fxx的图像向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则的最小值是()A.16B.14C.13D.126,从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.237.函数()33cosxxfxx在区间,22的图像大致为()A.B.C.D.8.当1x时,函数()lnbfxaxx取得最大值2,则(2)f()A.1B.12C.12D.19.在长方体1111ABCDABCD中,已知1BD与平面ABCD和平面11AABB所成的角均为30,则()A.2ABADB.AB与平面11ABCD所成的角为30C.1ACCBD.1BD与平面11BBCC所成的角为4510.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若=2SS甲乙,则=VV甲乙()A.5B.22C.10D.510411.已知椭圆2222:1(0)xyCabab的离心率为13,12,AA分别为C的左、右顶点,B为C的上顶点.若121BABA,则C的方程为()A.2211816xyB.22198xyC.22132xyD.2212xy12.已知910,1011,89mmmab,则()A.0abB.0abC.0baD.0ba二、填空题:本题共4小题,每小题5分,共20分。13.已知向量(,3),(1,1)mmab.若ab,则m______________.14.设点M在直线210xy上,点(3,0)和(0,1)均在M上,则M的方程为______________.15.记双曲线2222:1(0,0)xyCabab的离心率为e,写出满足条件“直线2yx与C无公共点”的e的一个值______________.16.已知ABC△中,点D在边BC上,120,2,2ADBADCDBD.当ACAB取得最小值时,BD______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()nadbcKabcdacbd,2PKk…0.1000.0500.010k2.7063.8416.63518.(12分)记nS为数列na的前n项和.已知221nnSnan.(1)证明:na是等差数列;(2)若479,,aaa成等比数列,求nS的最小值.19.(12分)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD是边长为8(单位:cm)的正方形,,,,EABFBCGCDHDA△△△△均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF∥平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).20.(12分)已知函数32(),()fxxxgxxa,曲线()yfx在点11,xfx处的切线也是曲线()ygx的切线.(1)若11x,求a:(2)求a的取值范围.21.(12分)设抛物线2:2(0)Cypxp的焦点为F,点(,0)Dp,过F的直线交C于M,N两点.当直线MD垂直于x轴时,3MF.(1)求C的方程:(2)设直线,MDND与C的另一个交点分别为A,B,记直线,MNAB的倾斜角分别为,.当取得最大值时,求直线AB的方程.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线1C的参数方程为26txyt(t为参数),曲线2C的参数方程为26sxys(s为参数).(1)写出1C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线3C的极坐标方程为2cossin0,求3C与1C交点的直角坐标,及3C与2C交点的直角坐标.23.[选修4-5:不等式选讲](10分)已知,,abc均为正数,且22243abc,证明:(1)23abc„(2)若2bc,则113ac….2022年普通高等学校招生全国统一考试(云南卷)数学(文科)参考答案注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.B3.D4.B5.C6.C7.A8.B9.D10.C11.B12.A二、填空题:本题共4小题,每小题5分,共20分.13.34##0.7514.22(1)(1)5xy15.2(满足15e皆可)16.31##1+3三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(1)A,B两家公司长途客车准点的概率分别为1213,78(2)有18.(1)证明见解析;(2)78.19.(1)如图所示:,分别取,ABBC的中点,MN,连接MN,因为,EABFBC为全等的正三角形,所以,EMABFNBC,EMFN,又平面EAB平面ABCD,平面EAB平面ABCDAB,EM平面EAB,所以EM平面ABCD,同理可得FN平面ABCD,根据线面垂直的性质定理可知//EMFN,而EMFN,所以四边形EMNF为平行四边形,所以//EFMN,又EF平面ABCD,MN平面ABCD,所以//EF平面ABCD.(2)64033.20.(1)3(2)1,21.(1)24yx;(2):24ABxy.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(1)2620yxy;(2)31,CC的交点坐标为1,12,1,2,32,CC的交点坐标为1,12,1,2.[选修4-5:不等式选讲]23.(1)证明:由柯西不等式有222222221112abcabc,所以23abc,当且仅当21abc时,取等号,所以23abc;(2)证明:因为2bc,0a,0b,0c,由(1)得243abcac,即043ac,所以1143ac,由权方和不等式知22212111293444acacacac,当且仅当124ac,即1a,12c时取等号,所以113ac.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功