3G培训之四(TDSCDMA)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019/9/1713G培训资料之四2019/9/172第一部分:CDMATDD概述CDMATDD标准概况两种TDD技术简单比较TD-SCDMA主要技术优势2019/9/173TDD双工方式的优点频谱灵活性:不需要成对的频谱。在2GHz以下已很难找到成对的频谱上下行使用相同频率,上下行链路的传播特性相同,利于使用智能天线等新技术支持不对称数据业务:根据上下行业务量来自适应调整上下行时隙个数FDD系统一建立通信就将分配到一对频率以分别支持上下行业务。在不对称业务中,频率利用率显著降低FDD系统也可以用不同宽度的频段来支持不对称业务,但:频段相对固定,不可能灵活使用(例如下行频段比上行频段宽一倍)成本低:无收发隔离的要求,可以使用单片IC来实现RF收发信机2019/9/174TDD双工方式的问题及解决方法峰值/平均发射功率之比随时隙数增加而增加(低速/话音业务)TDD系统对峰值/平均发射功率比有要求,此比值随时隙数增加而增加,例如TD-SCDMA可能再增加7dB;而UTRA-TDD则可能增加12dB(单时隙业务)因CDMA要求线性工作,对发射功率和功率放大器要求较高TD-SCDMA使用智能天线,基站接受灵敏度增加9dB,故仍然可能使用低发射功率达到较远通信距离总的说来,在使用相同发射功率级别的手持机条件下,TD-SCDMA的通信距离比WCDMA要大通信距离(小区半径)主要受电波传播的时延所限制。对于TD-SCDMA系统,典型小区半径设置在11公里,这主要出于人口密集地区设置考虑。如果允许牺牲15%的容量,小区半径可达到40-50公里。ITU要求TDD系统支持终端移动速度为120km/h。但仿真试验结果表明在目前的芯片及算法条件下,可高于该值。2019/9/175TDD和FDD在第三代移动通信中必要的两种双工方式FDD适合于大区制的全国系统适合于对称业务,如话音、交互式实时数据业务等TD-SCDMA尤其适合于高密度用户地区:城市及近郊区的局部覆盖适合于对称及不对称的数据业务,如话音、实时数据业务、特别是互联网方式的业务能提供成本低廉的设备预计在3G中,使用移动卫星实现全球覆盖,使用FDD提供大区制对称业务,全国网,特别在城市及近郊区使用TD-SCDMA系统,用多模终端实现漫游2019/9/176IMT2000的CDMATDD标准概况两种CDMATDD:TD-SCDMA和UTRATDD两种TDD方案的异同:项目TD-SCDMAUTRATDD带宽和码片速率1.6MHz/1.28Mcps5MHz/3.84Mcps帧结构7时隙/5ms15时隙/10ms智能天线使用选项同步CDMA1/8chip1/4chips多用户检测使用使用切换接力切换硬切换设计思想全面满足IMT2000要求与WCDMA配合使用相同技术:信道编码和交织、调制(QPSK)、DCA、DTX、ODMA等等2019/9/177TD-SCDMA网络同步网络同步:系统内各基站的运行采用相同的帧同步定时同步的目的:避免相邻基站的收发时隙交叉,减小干扰同步精度要求:几微秒同步方法:GPS:网络主从同步空中主从同步BS0BS1BS2BS0BS1BS2BTSTxRxG2019/9/1783G业务与功能未来的“承载业务”电路交换(对称)用于诸如语音、视频会议、...等实时业务包交换(非对称)用于诸如电子邮件、因特网及内部网访问、视频点播、...等非实时业务实时业务与非实时业务的混和无线多媒体的数据业务移动速度为最高240km/h时,数据速率为8...64/144kbit/s手持机环境(速度30km/h),数据速率为8...384kbit/s室内环境(速度3km/h),数据速率可达2Mbit/s2019/9/179TDD小区搜索和接入问题小区搜索基本要求以每200KHz步长在全部带宽内搜索基站在短时间内完成母网搜索TDD系统小区搜索的困难上下行链路使用相同载波频率,用户离基站的距离可能远远大于离一个终端的距离用户不可能预先知道那一部分信号是来自基站随机接入的问题防止碰撞建立上行同步2019/9/1710动态信道分配(DCA)频域DCA频域DCA中每一小区使用多个无线信道(频道)在给定频谱范围内,与5MHz的带宽相比,TD-SCDMA的1.6MHz带宽使其具有3倍以上的无线信道数(频道数)时域DCA在一个TD-SCDMA载频上,使用7个时隙减少了每个时隙中同时处于激活状态的用户数量每载频多时隙,可以将受干扰最小的时隙动态分配给处于激活状态的用户码域DCA在同一个时隙中,通过改变分配的码道来避免偶然出现的码道质量恶化空域DCA通过智能天线,可基于每一用户进行定向空间去耦(降低多址干扰)下述几种动态信道分配方法全面降低了相应的小区间干扰,从而使频谱利用率得以优化2019/9/1711第二部分:TD-SCDMA技术TD-SCDMA关键技术TD-SCDMA物理层简介2019/9/1712TD-SCDMA的关键技术智能天线+多用户检测多时隙的TDMA+多码道DS_CDMA同步CDMA信道编码和交织(和3GPP相同)接力切换预期达到的目标高频谱利用率低设备成本满足IMT2000基本要求2019/9/1713TD-SCDMA简介帧结构Radioframe10msMultiframeSub-frame5msTS5TS4TS0TS2TS1GTS3TS6DwPTSUpPTSDataMidambleData675usgL1144chips2019/9/1714TD-SCDMA技术基础:智能天线使用智能天线...能量仅指向小区内处于激活状态的移动终端正在通信的移动终端在整个小区内处于受跟踪状态不使用智能天线...能量分布于整个小区内所有小区内的移动终端均相互干扰,此干扰是CDMA容量限制的主要原因智能天线的优势减少小区间干扰降低多径干扰基于每一用户的信噪比得以增加降低发射功率提高接收灵敏度增加了容量及小区覆盖半径2019/9/1715联合检测(JD)联合检测作用避免多址干扰检测动态范围急剧增大,无需软切换小区内干扰最小化联合检测原理特定的空中接口“突发”结构允许收信机对无线信道进行信道估计根据估计的无线信道,对所有信号同时进行检测2019/9/1716TD-SCDMA简介全向码道和赋形码道GDwPTSUpPTS两种赋形波束得到小区覆盖的全向波束针对用户终端的赋形波束BCH/DwPTS必须使用全向波束,覆盖整个小区,在帧结构中使用专门时隙业务码道通常使用赋形波束,只覆盖个别用户BCHTS5TS4TS0TS2TS1TS3TS62019/9/1717TD-SCDMA技术基础:同步CDMA定义上行链路各终端信号在基站解调器完全同步优点CDMA码道正交,降低码道间干扰,提高CDMA容量简化硬件,降低成本t基站解调器码道1码道2码道N2019/9/1718上行同步同步的建立在随机接入时建立依靠BTS接收到的SYNC1立即在下一个下行帧SS位置进行闭环控制同步的保持在每一上行帧检测Midamble立即在下一个下行帧SS位置进行闭环控制出现失步的可能性有限小区半径(取决于G的宽度,可能超过10km)比较宽的容许范围(+/-4chips)失步后执行链路重建SS上行业务时隙(BTS要求)Midamble随机接入SYNC1ssUpPTSUE的上行突发2019/9/1719TD-SCDMA技术:接力切换MS和BS0通信BS0通知邻近基站信息,并提供用户位置信息基站类型、载频、定时等切换准备MS搜索基站,建立同步MS或BS发起切换请求系统决定切换执行MS同时和两个基站建立通信完成切换不使用宏分集BS0BS1BS2MS2019/9/1720TD-SCDMA与WCDMA及GSM的切换TD-SCDMA(1.28McpsTDD)与3GPP内其他模式之间的测量和切换已经在3GPP内进行讨论并正在完善之中TD-SCDMA--GSM:测量和切换与UTRA3.84McpsTDD相同GSM--TD-SCDMA:在GSM以后的版本中,将会考虑向3G系统的切换问题,包括向TD-SCDMA的测量和切换(在3GPPGERAN讨论)2019/9/1721TD-SCDMA简介小区搜索TS5TS4TS0TS2TS1GTS3TS6DwPTSUpPTSTDD系统的小区搜索和FDD系统的主要区别:上下行信号工作于相同频率,可能接收到附近用户的强上行信号DwPTS同时起Pilot和SCH的作用,处于没有其它本小区多址干扰的独立时隙。当DwPTS搜索到,下行同步便获得了。BTS之间同步,所有小区的DwPTS将出现在重叠的时隙,便于切换中进行测量搜索过程:设定载波频率;搜索DwPTS;获得BCH(在TS0时隙)搜索DwPTS的方法:接收并记录任意5ms的数据,用已知正交码序列在一个个窗口内求相关。TS5TS45msTS62019/9/1722TD-SCDMA简介随机接入随机接入必须完成的工作:上行同步、功率控制、系统获得接入要求、用户鉴权、分配业务码道等随机接入必须考虑的问题:RACH/FACH的高效率工作;防止碰撞的策略;加快接入速度。随机接入过程:UE:开环功率控制和开环同步控制,发射UpPTS,等待BTS回答BTS:控制UE的发射功率和时延,获得UE接入要求系统:鉴权和分配码道GDwPTSUpPTSTS5TS4TS0TS2TS1TS3TS62019/9/1723随机接入过程UENodeBUpPTS终端选择SYNC1,以估算的时间和功率发送基站检测到SYNC1,并回送定时和功率调整FPACHRACH调整定时和功率,发送随机接入请求FACH指配信道,继续完成接入过程和鉴权2019/9/1724信道及映射关系TransportchannelsPhysicalchannelsDCHDedicatedPhysicalChannel(DPCH)BCHPrimaryCommonControlPhysicalChannels(P-CCPCH)PCHSecondaryCommonControlPhysicalChannels(S-CCPCH)FACHSecondaryCommonControlPhysicalChannels(S-CCPCH)PICHRACHPhysicalRandomAccessChannel(PRACH)USCHPhysicalUplinkSharedChannel(PUSCH)DSCHPhysicalDownlinkSharedChannel(PDSCH)DownlinkPilotChannel(DwPCH)UplinkPilotChannel(UpPCH)FPACH2019/9/1725TD-SCDMA简介物理层总结低码片速率:1.28Mcps(WCDMA的1/3)适合智能天线和同步CDMATDD的帧结构用智能天线+多用户检测联合算法达到全部资源同时工作的效果采用和3GPP相同的调制、信道编码、交织和复接技术提供不对称上下行业务功率控制和上行同步控制:控制频率:0-200次/秒功率控制步长:1-3dB同步控制精度:1/8码片宽度开环和闭环控制2019/9/1726结论:TD-SCDMA的主要优势完全满足对3G业务与功能的需求能在现有稳定的GSM网络上迅速而直接部署能实现从第二代到第三代的平滑演进完全满足第三代业务的要求突出的频谱利用率:比其它3G标准的现有设备高一倍无需使用成对的频段支持蜂窝组网,可以形成宏小区、微小区及微微小区,每个小区可支持不同的不对称业务灵活、自适应的上下行业务分配,特别适合各种变化的不对称业务(如无线因特网)系统成本低2019/9/1727

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功