高中数学教案篇【实用4篇】在教学的过程中,每个学期都会需要用到教案,那么你准备好你的高中数学教案了吗?下面是网友给大家分享的高中数学教案篇【实用4篇】,欢迎大家来参考下载。在教学的过程中,每个学期都会需要用到教案,那么你准备好你的高中数学教案了吗?下面是小编给大家整理的高中数学教案精选模板7篇,欢迎大家来阅读。高中数学教案篇1教材分析1.知识内容与结构分析集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用.课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力.2.知识学习意义分析通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用.3.教学建议与学法指导由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用.通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性.学情分析在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线).这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”.集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题.学习集合,可以发展同学们用数学语言进行交流的能力.教学目标1.知识与技能(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;(2)掌握集合的常用表示法——列举法和描述法.2.过程与方法通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.3.情态与价值在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识.重点难点1.教学重点:集合的基本概念与表示方法.2.教学难点:选择合适的方法正确表示集合.教学思路通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的.教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排.教学过程课前准备:提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)教与学的过程:预设问题设计意图师生活动教师活动一组二组三组活动同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗?提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)学生三个组分组轮流回答。你能说出他们有什么共同的特征吗?为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集).学生讨论,分组轮流回答。你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊?通过学生自己总结,对元素与集合的关系记忆更深刻。教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做A)学生讨论,分组轮流回答。可以互相挑出对方回答问题的错误来比赛。我们描述集合常用哪些方法呢?怎么表示?引导学生认识集合的两种常见表示方法。教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。同学们上黑板边回答边演练。谁能试着说说集合中的元素有什么特点啊?拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。即(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。(2)互异性:同一个集合中的元素是互不相同的。(3)无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。)学生探究讨论,回答。什么叫两个集合相等呢?深刻理解集合。教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。)学生探讨回答。高中数学教案篇2教学目的:1、使理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。2、了解线段垂直平分线的轨迹问题。3、结合教学内容培养学生的动作、形象和抽象。教学重点:线段的垂直平分线性质定理及逆定理的引入证明及运用。教学难点:线段的垂直平分线性质定理及逆定理的关系。教学关键:1、垂直平分线上所有的点和线段两端点的距离相等。2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。教具:投影仪及投影胶片。教学过程:一、提问1、角平分线的性质定理及逆定理是什么?2、怎样做一条线段的垂直平分线?二、新课1、请同学们在练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?通过学生的观察、分析得出结果PA=PB,再取一点P试一试仍然有PA=PB,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。这个命题,是我们通过作图、观察、猜想得到的`,还得在理论上加以证明是真命题才能做为定理。已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上求证:PA=PB如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB证明:∵PC⊥AB(已知)∴∠PCA=∠PCB(垂直的定义)在ΔPCA和ΔPCB中∴ΔPCA≌ΔPCB(SAS)即:PA=PB(全等三角形的对应边相等)。反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)∴EF是等腰三角型ΔPAB的顶角平分线∴EF是AB的垂直平分线(等腰三角形三线合一性质)∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的所有点的集合。线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。三、举例(用幻灯展示)例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。证明:∵点P在线段AB的垂直平分线上∴PA=PB同理PB=PC∴PA=PB=PC由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。四、小结正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。高中数学教案篇3教学目标:1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进学生全面认识数学的科学价值、应用价值和文化价值。2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。教学重点:如何建立实际问题的目标函数是教学的重点与难点。教学过程:一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。1。几何方面的应用(面积和体积等的最值)。2。物理方面的应用(功和功率等最值)。3。经济学方面的应用(利润方面最值)。三、知识建构例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?说明1解应用题一般有四个要点步骤:设——列——解——答。说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可。例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值的函数称单峰函数。说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:S1列:列出函数关系式。S2求:求函数的导数。S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为多大时,才能使电功率最大?最大电功率是多少?说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。(1)设,生产多少单位产品时,边际成本最低?(2)设,产品的单价,怎样的定价可使利润最大?四、课堂练习1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。2。在半径为R的圆内,作内接等腰三角形,当底边上高为时,它的面积最大。3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。五、回顾反思(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。(3)相当多有关最值的实际问题用导数方法解决较简单。六、课外作业课本第38页第1,2,3,4题。高中数学教案篇4高中数学趣味竞赛题(共10题)1、撒谎的有几人5个高