高中数学说课稿【参考4篇】

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

好范文解忧愁1/40高中数学说课稿【参考4篇】【前言】本站网友为您精挑细选分享的优秀文档“高中数学说课稿【参考4篇】”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!高中数学说课稿(精选10【第一篇】一、教材分析本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察好范文解忧愁2/40与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。教学重点:正弦定理的资料,正弦定理的证明及基本应用。教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。二、教法根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,好范文解忧愁3/40从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点三、学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。四、教学过程第一:创设情景,大概用2分钟第二:实践探究,构成概念,大约用25分钟第三:应用概念,拓展反思,大约用13分钟(一)创设情境,布疑激趣“兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不明白AC和BC的长度是多少好去截料,好范文解忧愁4/40你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。(二)探寻特例,提出猜想1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。3.让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。(三)逻辑推理,证明猜想1.强调将猜想转化为定理,需要严格的理论证明。2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明好范文解忧愁5/40(四)归纳总结,简单应用1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。(五)讲解例题,巩固定理1.例1。在△ABC中,已知A=32°,B=°,a=解三角形。例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。(六)课堂练习,提高巩固1、在△ABC中,已知下列条件,解三角形。(1)A=45°,C=30°,c=10cm好范文解忧愁6/40(2)A=60°,B=45°,c=20cm2、在△ABC中,已知下列条件,解三角形。(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°学生板演,教师巡视,及时发现问题,并解答。(七)小结反思,提高认识经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?1.用向量证明了正弦定理,体现了数形结合的数学思想。2.它表述了三角形的边与对角的正弦值的关系。3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。(从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)(八)任务后延,自主探究如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一好范文解忧愁7/40节资料,余弦定理。布置作业,预习下一节资料。高中数学说课稿(精选10【第二篇】一、教材分析:《向量的加法》是《必修》4第二章第二单元中平面向量的线性运算的第一节课。本节资料有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在平面向量及空间向量中有很重要的地位。二、学情分析:学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,明白向量能够自由移动,这是学习本节资料的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可经过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。好范文解忧愁8/40三、教学目的:1、经过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。3、经过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的本事。四、教学重、难点重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,可是三角形法则适用范围更加广泛,且简便易行,所以是详讲资料,平行四边形法则在本课中所占份量略少于三角形法则。难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。五、教学方法好范文解忧愁9/40本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;经过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。六、数学思想的体现:1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从比较中看出两者的不一样,效果较好。3、归纳思想:主要体此刻以下三个环节:好范文解忧愁10/40①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都能够选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。七、教学过程:1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情景,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。2、引入新课:(1)平行四边形法则的引入。学生在物理学中虽然接触过位移的合成,可是并没有构成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,可是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给好范文解忧愁11/40出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一齐才能用平行四边形法则,不在一齐不能用。这时要经过讲解例1,使学生认识到能够经过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易理解,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的起点相同这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一齐时,须把起点移到一齐,至此才能使学生完成对平行四边形法则理解真正到位。(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入。所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还能够利用三角形法则来做。好范文解忧愁12/40这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都能够用。设计意图:由平行四边形法则的图形引入三角形法则,能够很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,并且衔接自然,能够使学生比较地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。(3)共线向量的加法方向相同的两个向量相加,对学生来说较易完成,将它们接在一齐,取它们的方向及长度之和,作为和向量的方向与

1 / 40
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功