参考资料,少熬夜!圆的面积教案【通用4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“圆的面积教案【通用4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!圆的面积课堂教学设计【第一篇】教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。教学目标:1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。教学过程:一、回顾旧知,引出新知1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。2、学生回答后老师让学生上前展示自己的方法二、创设情境,提出问题1、教师引导观察,说说从中得到那些数学信息?2、老师引导,找出与圆的面积有关的数学问题。3、学生回答,老师板书(圆的面积)三、探究思考,解决问题1、让学生估计圆的面积大小(1)与同桌说一说你是怎么估的(2)汇报,参考资料,少熬夜!(3)老师引导有没有更好的方法2、探索圆面积公式(1)学生操作(2)指名汇报。(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?(5)观察汇报:由长方形的面积公式推导圆形的面积计算公式,并说出你的理由。(6)总结:1、计算圆的面积要那知道那些条件。2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。四:实践应用《圆的面积》教学反思教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:一、复习占用的时间不当。复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。二、探究没有充分放手。在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。三、没给问题爆发的机会在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的。错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?教学内容:【第二篇】九年义务教育六年制小学教科书《数学》第十一册,圆的面积。圆的面积教案【第三篇】教学目标1、经历圆面积计算公式的推导过程,掌握圆的面参考资料,少熬夜!积计算公式。2、能正确运用圆面积的计算公式计算圆的面积。3、在探究圆面积的计算公式过程中,体会转化的数学思想方法;初步感受极限的思想。教学重难点及学具准备教学重点和难点:圆面积的计算公式推导。教学准备:圆形纸片、剪刀、多媒体课件等。教学过程课前谈话:聊一聊《曹冲称象》的故事。(设计意图:放松学生的紧张心情,为课堂教学做好了心理准备;另一方面,用《曹冲称象》的故事,唤起学生已有的经验。设计“怎么不直接称大象的重量?”这一关键问题,抓住学生回答中的“用石头代替大象”“石头的重量和大象的重量相等”等要点,把学生经验中的“转化”思想激活,为新课的教学做好思想方法上的准备。)教学过程:一、开门见山,揭示课题(出示一个圆)大家看,这是什么图形?我们已经认识了圆,学习了圆的周长,这节课我们一起来学习圆的面积。(板书课题:圆的面积)(设计题图:采用开门见山的的引入方式,这样设计简洁明快,结构紧凑,能保证把过程性目标落实到位。)二、第一次探究,明确思路,体会“转化”的数学思想方法请你想一想,什么是圆的面积呢?圆所占平面的大小就是圆的面积。那怎么求圆的面积呢?圆能不能转化成我们学过的图形呢?我们可以试一试。请大家利用手中的圆纸片和准备的工具在小组内研究研究。(设计意图:在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来,沟通知识之间的联系,促成迁移。)怎样让扇形和三角形的面积接近一些?现在,有两种思路,一种是把圆折一折想转化成三角形,还有一种是想通过剪拼把圆转化成平行四边形,你们发现这两种方法的共同点了吗?把圆这个新图形转化成已经学过的图形求出面积。(设计意图:“你们发现这两种方法的共同点了参考资料,少熬夜!吗?”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。)三、第二次探究,明确方法,体验“极限思想”我发现一个问题,不管是折成的三角形,还是剪拼成的平行四边形都不是很像,怎么才能更像呢,这就是下面要研究的问题。请每个小组在两种思路中选择一种继续研究。为什么要折这么多份?把圆分的份数越多,其中的一份越接近三角形。三角形的底可以看成这段弧,三角形的高可以看成是圆的半径。你们会求三角形的面积吗?三角形的面积会求了,能求出圆的面积吗?把圆剪成更多份,能让拼成的图形更接近平行四边形。(设计意图:让学生真切地看到“自己想象的过程”,充分地体验“极限思想”。)四、第三次探究,深化思维,推导公式刚才同学们借助学具通过动手操作,都找到解决问题的方法了。一种是把圆转化成长方形求出面积;一种是把圆转化成三角形,得到圆的面积。可是数学学习不仅需要动手操作,更需要借助数字、字母和符号等进行动脑思考和推理。现在,老师想给大家提个更高的要求:每个小组能不能还利用刚才选择的方法,推导出圆的面积计算公式呢?(设计意图:在第二次探究中,学生主要是借助学具进行动手操作,明晰求圆的面积的方法。操作对于小学生学习数学是必不可少的手段和方法,但数学思维的特点是要进行逻辑思考和推理。第三次探究结果的交流,教师有意识地先让学生交流将圆转化成长方形求出圆的面积公式的方法,因为这种方法学生理解起来比较容易,是要求每个学生都要掌握的方法。)五、解决问题1、现在你能求出黑板上这个圆形纸片的面积了吧?需要什么条件?这个圆的半径是10厘米,面积是多少呢?请大家做在练习本上。(请一名学生到黑板上板演。)(教师组织交流。)2、知道圆的半径可以求出圆的面积,那么,知道直径和周长能不能求出圆的面积呢?教师出示直径为6分米的圆和周长为厘米的圆,学生思考后说出求面积的方法,即要求圆的面积必须先根据直径或周长求出圆的半径。(设计意图:因为本节课的主要目标是引导学生去经历探究圆的面积公式的过程,充分体验“转化”和参考资料,少熬夜!“极限思想”,而有关求圆的面积的变式练习,以及利用圆的面积公式解决实际问题的练习都安排在下一节课中。因此,这节课只设计了几个基本练习,目的是检验学生对圆的面积的理解和掌握程度。)六、小结圆的面积课堂教学设计【第四篇】教学目标:⑴让学生经历探索圆面积公式的过程,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。⑵使学生进一步体会“转化”方法的价值,发展空间观念和初步的推理能力。教学流程:一、初探新知⑴分步出示例7。⑵数出正方形的面积和1/4圆的面积。正方形的面积:4×4=16平方厘米。1/4圆的面积:学生先独立数,交流答案,有12,,13三种;确定:边上的两个非常接近一格,就看作一格,学生再次数方格,答案是平方厘米。全班又一次数方格,再次验证平方厘米的准确性。⑶计算圆的面积。×4=50平方厘米。⑷研究圆面积和正方形面积的关系。教师谈话:既然圆是由正方形的边长画出,那么就要研究圆面积和正方形面积的关系。讨论:圆的面积大约是正方形面积的几倍?⑸小组合作,完成表格。⑹交流提升。交流表格中填写的内容;思考:圆的面积与它的半径有什么关系?圆的面积等于半径乘半径乘倍;圆的面积是半径乘半径的倍。转换再次理解:半径乘半径就是正方形的面积;正方形的面积就是半径乘半径。二、再探新知。⑴引发探究兴趣。教师谈话:圆的面积等于半径乘半径乘倍,这里的倍是近似数,现在又有同学猜想这个倍数可能就是π。那么,需要思考其他计算圆面积的方法。⑵回顾。黑板上出示平行四边形和三角形;回忆平行四边形和三角形面积的推导过程;重点总结:平行四边形面积的推理方法是[]“剪”,三角形面积的推理是“拼”。参考资料,少熬夜!⑶尝试。“拼”:两个完全相同的圆试拼,行不通;剪:出现二种情况,一是随意剪,二是平均分成8份或更多。随意剪,马上剪,马上否定;平均分成8份或更多的,让学生剪。先平均分成二份,告诉学生研究数学从简单的开始,边剪边拼边研究才是研究数学的正确方法,拼——拼不成已经学过的图形;再平均分成4份,再拼形成共识——象平行四边形;最后平均分成8份,一生演示到一半,学生已经清楚地感受到——更象平行四边形了。⑷媒体演示。媒体第一次演示:平均分成4份,拼成的图形有点像平行四边形;平均分成8份,拼成的图形像平行四边形;平均分成16份,拼成的图形更像平行四边形;平均分成32份,拼成的图形是平行四边形,且像长方形了。媒体第二次演示:重点观察长方形的长和宽与圆的联系。⑸推导公式。生:长方形的长就是圆周长的一半。师:怎么表示?生:c÷2。师:还可以怎么表示?生1:πd÷2。生2:2πr÷2。生3:2πr÷2=πr。比较选择:s=c÷2×r;s=πd÷2×r;s=πr×r.学生们都选择了s=πr×r,教师引导学生说明选择的理由,并板书:s=πr2三、应用新知。⑴出示例9。尝试解答,答题格式辅导。⑵作业,练一练。