2020年山东省济宁市中考数学试卷答案试题解析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)72的相反数是()A.72B.27C.27D.722.(3分)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.1413.(3分)下列各式是最简二次根式的是()A.13B.12C.3aD.534.(3分)一个多边形的内角和是1080,则这个多边形的边数是()A.9B.8C.7D.65.(3分)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42方向上,在海岛B的北偏西84方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里6.(3分)下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:)cm的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数x376350376350方差2s12.513.52.45.4A.甲B.乙C.丙D.丁7.(3分)数形结合是解决数学问题常用的思想方法.如图,直线5yx和直线yaxb相交于点P,根据图象可知,方程5xaxb的解是()A.20xB.5xC.25xD.15x8.(3分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.212cmB.215cmC.224cmD.230cm9.(3分)如图,在ABC中,点D为ABC的内心,60A,2CD,4BD.则DBC的面积是()A.43B.23C.2D.410.(3分)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)分解因式34aa的结果是.12.(3分)已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是(写出一个即可).13.(3分)已如3mn,则分式22(2)mnmnnmm的值是.14.(3分)如图,小明在距离地面30米的P处测得A处的俯角为15,B处的俯角为60.若斜面坡度为1:3,则斜坡AB的长是米.15.(3分)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,2CDCECA,分别延长AB,DC相交于点P,PBBO,22CD.则BO的长是.三、解答题:本大题共7小题,共55分.16.(6分)先化简,再求值:(1)(1)(2)xxxx,其中12x.17.(7分)某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分10099众数a98中位数96b平均数c94.8(1)统计表中,a,b,c;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.18.(7分)如图,在ABC中,ABAC,点P在BC上.(1)求作:PCD,使点D在AC上,且PCDABP∽;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若2APCABC.求证://PDAB.19.(8分)在ABC中,BC边的长为x,BC边上的高为y,ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线3yx向上平移(0)aa个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.20.(8分)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?21.(9分)我们把方程222()()xmynr称为圆心为(,)mn、半径长为r的圆的标准方程.例如,圆心为(1,2)、半径长为3的圆的标准方程是22(1)(2)9xy.在平面直角坐标系中,C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点(0,4)D,过点A,B,D的抛物线的顶点为E.(1)求C的标准方程;(2)试判断直线AE与C的位置关系,并说明理由.22.(10分)如图,在菱形ABCD中,ABAC,点E,F,G分别在边BC,CD上,BECG,AF平分EAG,点H是线段AF上一动点(与点A不重合).(1)求证:AEHAGH;(2)当12AB,4BE时.①求DGH周长的最小值;②若点O是AC的中点,是否存在直线OH将ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出AHAF的值;若不存在,请说明理由.2020年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)72的相反数是()A.72B.27C.27D.72【解答】解:72的相反数是:72.故选:D.2.(3分)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.141【解答】解:3.14159精确到千分位的结果是3.142.故选:C.3.(3分)下列各式是最简二次根式的是()A.13B.12C.3aD.53【解答】解:A、13是最简二次根式,符合题意;B、1223,不是最简二次根式,不符合题意;C、3aaa,不是最简二次根式,不符合题意;D、51533,不是最简二次根式,不符合题意.故选:A.4.(3分)一个多边形的内角和是1080,则这个多边形的边数是()A.9B.8C.7D.6【解答】解:设所求正n边形边数为n,则1080(2)180n,解得8n.故选:B.5.(3分)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42方向上,在海岛B的北偏西84方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里【解答】解:如图.根据题意得:84CBD,42CAB,42CCBDCABCAB,BCAB,15230AB,30BC,即海岛B到灯塔C的距离是30海里.故选:C.6.(3分)下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:)cm的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数x376350376350方差2s12.513.52.45.4A.甲B.乙C.丙D.丁【解答】解:乙和丁的平均数最小,从甲和丙中选择一人参加比赛,丙的方差最小,选择丙参赛.故选:C.7.(3分)数形结合是解决数学问题常用的思想方法.如图,直线5yx和直线yaxb相交于点P,根据图象可知,方程5xaxb的解是()A.20xB.5xC.25xD.15x【解答】解:直线5yx和直线yaxb相交于点(20,25)P直线5yx和直线yaxb相交于点P为20x.故选:A.8.(3分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.212cmB.215cmC.224cmD.230cm【解答】解:由三视图可知,原几何体为圆锥,226()45()2lcm,211622515222Srlcm侧.故选:B.9.(3分)如图,在ABC中,点D为ABC的内心,60A,2CD,4BD.则DBC的面积是()A.43B.23C.2D.4【解答】解:过点B作BHCD于点H.点D为ABC的内心,60A,11()(180)22DBCDCBABCACBA,1190906012022BDCA,则60BDH,4BD,2DH,23BH,2CD,DBC的面积112232322CDBH,故选:B.10.(3分)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101【解答】解:由题意知,第100个图形中,正方体一共有123991005050(个),其中写有“心”字的正方体有100个,抽到带“心”字正方体的概率是10025050101,故选:D.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)分解因式34aa的结果是(2)(2)aaa.【解答】解:原式2(4)aa(2)(2)aaa.故答案为:(2)(2)aaa.12.(3分)已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是4(写出一个即可).【解答】解:根据三角形的三边关系,得第三边应大于633,而小于639,故第三边的长度39x,这个三角形的第三边长可以,4.故答案为:4.13.(3分)已如3mn,则分式22(2)mnmnnmm的值是13.【解答】解:原式22(2)mnmmnnmm2()mnmmmn1mn,当3mn时,原式13故答案为:1314.(3分)如图,小明在距离地面30米的P处测得A处的俯角为15,B处的俯角为60.若斜面坡度为1:3,则斜坡AB的长是203米.【解答】解:如图所示:过点A作AFBC于点F,斜面坡度为1:3,13tan33AFABFBF,30ABF,在P处进行观测,测得山坡上A处的俯角为15,山脚B处的俯角为60,30HPB,45APB,60HBP,90PBA,45BAP,PBAB,30PHm,303sin602PHPBPB,解得:203PB,故203()ABm,答:斜坡AB的长是203m,故答案为:203.15.(3分)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,2CDCECA,分别延长AB,DC相交于点P,PBBO,22CD.则BO的长是4.【解答】解:连结OC,如图,2CDCECA,CDCACEDC,而ACDDCE,CADCDE∽,CADCDE,CADCBD,CDBCBD,BCDC;设O的半径为r,CDCB,CDCB,BOCBAD,//OCAD,22PCPOrCDOAr,242PCCD,PCBPAD,CPBAPD,PCBPAD∽,PCPBPAPD,即42362rr,4r,4OB,故答案为4.三、解答题:本大

1 / 23
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功