好文供参考!1/29小学数学教学案例精编5篇【引读】这篇优秀的文档“小学数学教学案例精编5篇”由网友上传分享,供您参考学习使用,希望此文对您有所帮助,喜欢的话就分享给下载吧!高中数学《诱导公式》教学案例分析1高中数学《诱导公式》教学案例分析来源:安徽省金寨第一中学发布时间:2009-07-23查看次数:424高中数学《诱导公式》教学案例分析一、教学设计:1、教学任务分析:(1):借助单位圆推导诱导公式,特别是学习对称性与角终边对称性中,发现问题。提出研究方法(2)能运用诱导公式求三角函数值,进行简单三角函数式的化简与恒等式的证明,并从中体会未知到已知,复杂到简单的转化过程2、教学重难点:教学重点:诱导公式的探究,运用诱导公式进行简单三角函数式的求值,化简与恒等式的证明,提高对数学内部的联系。教学难点:发现圆的几何性质(特别是对称性)与好文供参考!2/29三角函数的联系,特别是直角坐标系内关于直y=x对称的点的性质与的诱导公式的关系3、教学基本流程:4、教学情景设计:问题设计意图师生活动阅读P26的“思考”,你能够说说从圆的对称性可以得到哪些三角函数的性质?引导学生建立圆的性质与三角函数诱导公式之间的联系对称性出发,思考并回答可以研究什么什么性质,老师注意引导学生从圆的对称性出发,思考相应角的关系,再进一步思考相应的三角函数值的关系。2.阅读P26页的“探究”并以问题1为例,说明你的探究结果讲“思考的问题具体化”进一步明确探究方向教师引导学生思考终边与角的终边关于原点对称的角与的数量关系,然后得出三角函数值之间的关系3.说明自己的探究结果为什么成立引导学生利用三角函数的定义进行证明公式2教师提出对探究结果证明的要求,并留给学生一定的思考时间,学生利用定义进行证明,教师提醒学生注意使用前面的探究结果4.用类似的方法,探究终边分别与角的终边关于x轴,关于y轴对称的角与的数量关系,他们的三角函数值有什么关系?能否证明?让学生加深理解利用单位圆的对称性研究三好文供参考!3/29角函数的性质的思想方法教师引导学生“并列学习”同样的思路研究诱导公式3.与4,学生独立思考并自主探究和给出证明5.概括公式2----4的探究思想方法及时概括思想方法,提高学习活动中的思想性引导学生概括出:6.概括一下公式1--4的特点及其作用深化对公式的理解提醒学生注意公式两边角的共同点,学生讨论并概括说明7.例题1--2通过公式的应用,较深对公式的理解学生对公式的初步应用8.借助单位圆探究终边与角的终边关于直线对称的角与有何数量关系?它们的正弦,余弦之间的关系式?根据公式2--4的探究经验,引导学生独立探究公式5老师提出问题,学生看到网络上的单位圆,发现角的终边关于直线对称的角与的数量关系,关于直线对称的两个点的坐标之间的关系进行引导9.能否用已有的公式得到的正弦,余弦与的正弦,余弦之间的关系式?引导学生用已学的知识进行证明公式6教师引导学生将转化为利用公式推导公式610例题加深公式的理解学生完成,老师讲解11.在线测评看看学生的掌握情况学生测评,教师给以评价12.总结这些公式,记忆方法。高中数学《诱导公式》网络教学教师小结:林婉查作为一名新老师,很荣幸能够让大家来听我的课,好文供参考!4/29通过这课,我学习到如下的东西:1.要认真的研读新课标,对教学的目标,重难点把握要到位2.注意板书设计,注重细节的东西,语速需要改正3、进一步的学习网页制作,让你的网页更加的完善,学生更容易操作4、尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣5、上课的生动化,形象化需要加强高中数学《诱导公式》网络教学教师评语:林婉查2006年11月22日数学林婉查K-12课题:诱导公式(校际课)1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出好文供参考!5/29来,并形成自我的经验。4.评议者:引导学生通过网络进行探究。建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。(1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好(2)这样子的教学可以提高上课效率,让学生更多的时间思考(3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用(4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来(5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少(6)让学生多探究,课堂会更热闹(7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习(8)教学模式相对简单重复(9)思路较为清晰,规范化的推理高中数学教学案例分析2教学案例好文供参考!6/29我所带的是高二(2)班,她是个庞大的班级,有56名学生。在第一周上课的几天里,我渐渐的发现一名“怪”学生——张勇明。这名学生坐在教室正中间第二排的位置上。这样的位置是老师能看到的最佳位置,就在老师眼皮底下。上课时,其他这种位置的同学慑于被老师盯上,一般都规规矩矩的坐着,认认真真的听课,而这位同学却不然,他好象一点也不怕被我盯上。上课时,先是看着黑板听一会儿,然后就弯下腰半趴在课桌上什么也不看,懒懒的样子,不知道在干什么。下课后我走到他跟前问他是不是有什么事,他笑着摇摇头说没有。课后(2)班主任周老师告诉我,其实那个学生的数学基础挺扎实的,只是有些懒不能长久坚持下去,应该多注意多关照一下。在以后的上课中,我在提问其他同学问题的时候,也有意无意的去提问他。课后,走到他跟前问他有没有不清楚的问题。渐渐的在以后的课堂上,这位同学半趴在课桌上的次数少了,当讲到关键处时,我也能看到他在集中精力听。而且我还发现他一个很好的学习习惯——提前预习书本内容,提前做课后练习及习题。有一次我讲四种命好文供参考!7/29题的关系,下课后我走到张勇明跟前,看到他已经把下一节充分必要条件的练习题做过啦,而且准确无误。中段考试成绩出来了,张勇明的数学考了75分(满分150分),全班第一名。其中有一道数学大题难度较大,我曾在课堂上给同学们讲过,可是只有张勇明一个学生作对,其他做对的同学寥寥无几。由此,我体会到:由于(2)班大部分同学基础比较薄弱,而高中阶段新内容新知识的接受又需要以前所学内容做铺垫,而以前的知识又没真正掌握,这样恶性循环下去以致使他们失去了学习的兴趣。所以在课堂上,多数同学听的蒙蒙胧胧似懂非懂。针对这种现象,我要求同学做到:(1)把以前的数学课本从家里找到带到教室来,放在课桌上有意识的经常翻一翻。这样有些没记住的公式或不熟悉的公理定理就能记住了。(2)同学们作课堂笔记的时候,对于涉及到的旧知识内容如果不了解,那么也要做笔记。这样易于查漏补缺,新旧内容一起巩固并掌握。(3)当天事情当天做。每天上完新课后,若有不懂的问题争取当天解决,或者问我或者问同学。(4)经常复习巩固。高二(班)路玉高中数学教学案例3好文供参考!8/29教学精细化管理有三个层面的涵义。1、“细”,即管理覆盖的教学环节要全。在计划制定、个人备课、集体备课、上课、课后反思、辅导、测试、反馈、总结和教学评价等各环节都要制定规章,不可或缺。只有关注每个环节、每个细节,才不至于影响系统整体功能的发挥。2、“精”,即管理工作要突出重点。学校要根据实际确定每个时期的教学管理工作重点,重点工作重点做,才能把握住方向,才能立竿见影出效益。不分主次地平均用力往往事倍功半。3、“精细化管理”要制度化,落实要到位。有制度不落实等于没制度,落实不坚决、不坚持,也不出效益。情境教学,即构建一个以情境为基础,学生在学习中成为提出问题和解决问题的主体,使教学过程成为学生主动获取知识、发展能力、体验数学的过程。“正弦定理”是全日制普通高级中学教科书(试验修订本)数学第一册(下)的教学内容之一,既是初中“解直角三角形”内容的直接延伸,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本次课的主要任务是引好文供参考!9/29入并证明正弦定理,我们希望通过本课题探索情境教学在高中数学教学中的应用方法和效果。一、教学设计1、创设一个现实问题情境作为提出问题的背景;2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。二、教学过程1、设置情境利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1km的码头C处。已知船在静水中的速度好文供参考!10/29∣vl∣=5km∕h,水流速度∣v2∣=3km∕h。2、提出问题师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:(l)船应开往B处还是C处?(2)船从A开到B、C分别需要多少时间?(3)船从A到B、C的距离分别是多少?(4)船从A到B、C时的速度大小分别是多少?(5)船应向什么方向开,才能保证沿直线到达B、C?师:大家讨论一下,应该怎样解决上述问题?大家经过讨论达成如下共识:要回答问题(l),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。好文供参考!11/29生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小∣v∣及vl与v2的夹角θ:生:船从A开往C的情况如图3,∣AD∣=∣v1∣=5,∣DE∣=∣AF∣=∣v2∣=3,易求得∠AED=∠EAF=450,还需求θ及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。师:请大家想一下,这两个问题的数学实质是什么?部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。师:请大家讨论一下,如何解决这两个问题?生:在已知条件下,若能知道三角形中两条边与其对角这4个元素之间的数量关系,则可以解决上述问题,求出另一边的对角。生:如果另一边的对角已经求出,那么第三个角也能够求出。只要能知道三角形中两条边与其对角这4个元素的数量关系,则第三边也可求出。生:在已知条件下,如果能知道三角形中三条边和一个角这4个元素之间的数量关系,也能求出第三边和另一边的对角。师:同学们的设想很好,只要能知道三角形中两边与它们的对角间的数量关系,或者三条边与一个角间的好文