TD-LTE技术原理介绍中移动研究院无线所毛剑慧2012.9.5内容:•TD-LTE关键技术-物理层–基本原理–帧结构及物理信道–物理层过程•TD-LTE关键技术-高层•LTE-A技术的引入分析OFDM概述正交频分复用技术,多载波调制的一种。将一个宽频信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到每个子信道上进行传输。概念关键技术帧结构物理信道物理层过程频域波形f宽频信道正交子信道LTE多址方式-下行将传输带宽划分成一系列正交的子载波资源,将不同的子载波资源分配给不同的用户实现多址。因为子载波相互正交,所以小区内用户之间没有干扰。时域波形tpower峰均比示意图下行多址方式—OFDMA下行多址方式特点关键技术帧结构物理信道物理层过程同相位的子载波的波形在时域上直接叠加。因子载波数量多,造成峰均比(PAPR)较高,调制信号的动态范围大,提高了对功放的要求。分布式:分配给用户的RB不连续集中式:连续RB分给一个用户•优点:调度开销小•优点:频选调度增益较大频率时间用户A用户B用户C子载波在这个调度周期中,用户A是分布式,用户B是集中式LTE多址方式-上行和OFDMA相同,将传输带宽划分成一系列正交的子载波资源,将不同的子载波资源分配给不同的用户实现多址。注意不同的是:任一终端使用的子载波必须连续上行多址方式—SC-FDMA上行多址方式特点关键技术帧结构物理信道物理层过程考虑到多载波带来的高PAPR会影响终端的射频成本和电池寿命,LTE上行采用SingleCarrier-FDMA(即SC-FDMA)以改善峰均比。SC-FDMA的特点是,在采用IFFT将子载波转换为时域信号之前,先对信号进行了FFT转换,从而引入部分单载波特性,降低了峰均比。频率时间用户A用户B用户C子载波在任一调度周期中,一个用户分得的子载波必须是连续的上下行资源单位信道类型信道名称资源调度单位资源位置控制信道PCFICHREG占用4个REG,系统全带宽平均分配时域:下行子帧的第一个OFDM符号PHICHREG最少占用3个REG时域:下行子帧的第一或前三个OFDM符号PDCCHCCE下行子帧中前1/2/3个符号中除了PCFICH、PHICH、参考信号所占用的资源PBCHN/A频域:频点中间的72个子载波时域:每无线帧subframe0第二个slotPUCCH位于上行子帧的频域两边边带上业务信道PDSCH\PUSCHRB除了分配给控制信道及参考信号的资源频率CCE:ControlChannelElement。CCE=9REGREG:REgroup,资源粒子组。REG=4RERE:ResourceElement。LTE最小的时频资源单位。频域上占一个子载波(15kHz),时域上占一个OFDM符号(1/14ms)关键技术帧结构物理信道物理层过程RB:ResourceBlock。LTE系统最常见的调度单位,上下行业务信道都以RB为单位进行调度。RB=84RE。左图即为一个RB。时域上占7个OFDM符号,频域上占12个子载波时间1个OFDM符号1个子载波LTERB资源示意图多路信道传输同样信息多路信道同时传输不同信息多路天线阵列赋形成单路信号传输•包括时间分集,空间分集和频率分集•提高接收的可靠性和提高覆盖•适用于需要保证可靠性或覆盖的环境•理论上成倍提高峰值速率•适合密集城区信号散射多地区,不适合有直射信号的情况最大比合并最小均方误差或串行干扰删除波束赋形(Beamforming)发射分集分集合并•通过对信道的准确估计,针对用户形成波束,降低用户间干扰•可以提高覆盖能力,同时降低小区内干扰,提升系统吞吐量空间复用多天线技术:分集、空间复用和波束赋形关键技术帧结构物理信道物理层过程LTE传输模式-概述Mode传输模式技术描述应用场景1单天线传输信息通过单天线进行发送无法布放双通道室分系统的室内站2发射分集同一信息的多个信号副本分别通过多个衰落特性相互独立的信道进行发送信道质量不好时,如小区边缘3开环空间复用终端不反馈信道信息,发射端根据预定义的信道信息来确定发射信号信道质量高且空间独立性强时4闭环空间复用需要终端反馈信道信息,发射端采用该信息进行信号预处理以产生空间独立性信道质量高且空间独立性强时。终端静止时性能好5多用户MIMO基站使用相同时频资源将多个数据流发送给不同用户,接收端利用多根天线对干扰数据流进行取消和零陷。6单层闭环空间复用终端反馈RI=1时,发射端采用单层预编码,使其适应当前的信道7单流Beamforming发射端利用上行信号来估计下行信道的特征,在下行信号发送时,每根天线上乘以相应的特征权值,使其天线阵发射信号具有波束赋形效果信道质量不好时,如小区边缘8双流Beamforming结合复用和智能天线技术,进行多路波束赋形发送,既提高用户信号强度,又提高用户的峰值和均值速率信道质量较高且具有一定空间独立性时(信道质量介于单流beamforming与空间复用之间)•传输模式是针对单个终端的。同小区不同终端可以有不同传输模式•eNB自行决定某一时刻对某一终端采用什么传输模式,并通过RRC信令通知终端•模式3到模式8中均含有发射分集。当信道质量快速恶化时,eNB可以快速切换到模式内发射分集模式关键技术帧结构物理信道物理层过程接收机使用来自多个信道的副本信息能比较正确的恢复出原发送信号,从而获得分集增益。手机受电池容量限制,因此在上行链路中采用接收分集也可有效降低手机发射功率LTE上行天线技术:接收分集MRC(最大比合并)•线性合并后的信噪比达到最大化•相干合并:信号相加时相位是对齐的•越强的信号采用越高的权重•适用场景:白噪或干扰无方向性的场景原理IRC(干扰抑制合并)•合并后的SINR达到最大化•有用信号方向得到高的增益•干扰信号方向得到低的增益•适用场景:干扰具有较强方向性的场景。接收分集的主要算法:MRC&IRC•由于IRC在最大化有用信号接收的同时能最小化干扰信号,故通常情况IRC优于MRC•天线数越多及干扰越强时,IRC增益越大•IRC需进行干扰估计,计算复杂度较大性能比较初期引入建议:•IRC性能较好,故建议厂商支持IRC•鉴于IRC复杂度较大,厂商初期可能较难支持,故同时要求MRC关键技术帧结构物理信道物理层过程内容:•TD-LTE关键技术-物理层–基本原理–帧结构及物理信道–物理层过程•TD-LTE关键技术-高层•LTE-A技术的引入分析TD-LTE帧结构子帧:1ms时隙0.5ms#0DwPTS特殊子帧:1ms#2#3#4半帧:5ms半帧:5ms帧:10msGPUpPTSTD-LTE帧结构特点:•无论是正常子帧还是特殊子帧,长度均为1ms。FDD子帧长度也是1ms。•一个无线帧分为两个5ms半帧,帧长10ms。和FDDLTE的帧长一样。•特殊子帧DwPTS+GP+UpPTS=1msDL-ULConfigurationSwitch-pointperiodicitySubframenumber012345678905msDSUUUDSUUU15msDSUUDDSUUD25msDSUDDDSUDD310msDSUUUDDDDD410msDSUUDDDDDD510msDSUDDDDDDD65msDSUUUDSUUDTD-LTE上下行配比表转换周期为5ms表示每5ms有一个特殊时隙。转换周期为10ms表示每10ms有一个特殊时隙。关键技术帧结构物理信道物理层过程TD-LTE和TD-SCDMA邻频共存(1)TD-S=3:3根据仿真结果,此时TD-LTE下行扇区吞吐量为26Mbps左右(采用10:2:2,特殊时隙可以用来传输业务)TD-LTE=2:2+10:2:2TD-SCDMA时隙=675usDwPTS=75usGP=75usUpPTS=125usTD-LTE子帧=1ms=30720Ts10:2:2=21952Ts:4384Ts:4384Ts3:9:2=6592Ts:19744Ts:4384TsTD-SCDMATD-LTE1.025ms=2.15ms特殊时隙特殊时隙共存要求:上下行没有交叠(图中TbTa)。则TD-LTE的DwPTS必须小于0.85ms(26112Ts)。可以采用10:2:2的配置0.675ms1ms关键技术帧结构物理信道物理层过程TD-SCDMATD-LTETD-SCDMA时隙=675usDwPTS=75usGP=75usUpPTS=125usTD-LTE子帧=1ms=30720Ts10:2:2=21952Ts:4384Ts:4384Ts3:9:2=6592Ts:19744Ts:4384Ts0.7ms0.675ms1ms=1.475ms共存要求:上下行没有交叠(图中TbTa)。则TD-LTE的DwPTS必须小于0.525ms(16128Ts),只能采用3:9:2的配置TD-S=4:2根据计算,此时TD-LTE下行扇区吞吐量为28Mbps左右(为避免干扰,特殊时隙只能采用3:9:2,无法用来传输业务。经计算,为和TD-SCDMA时隙对齐引起的容量损失约为20%)计算方法:TS36.213规定,特殊时隙DwPTS如果用于传输数据,那么吞吐量按照正常下行时隙的0.75倍传输。如果采用10:2:2配置,则下行容量为3个正常时隙吞吐量+0.75倍正常时隙吞吐量。如果丢失此0.75倍传输机会,则损失的吞吐量为0.75/3.75=20%TD-LTE=3:1+3:9:2关键技术帧结构物理信道物理层过程TD-LTE和TD-SCDMA邻频共存(2)TD-LTE和TD-SCDMA邻频共存(3)•TD-SCDMA与TD-LTE邻频共存时,需要严格时隙对齐,当TD-SCDMA配置为2UL:4DL时,TD-LTE需用配置1UL:3DL,特殊时隙3:9:2或3:10:1与其匹配•DwPTS均仅占用3个符号,无法传输业务信道,为了提高业务信道的容量,又满足邻频共存时两个TDD系统的GP对齐,建议增加DWPTS的符号数,在短CP情况下,增加新的特殊时隙配比6:6:2;在长CP下情况下,增加新的特殊时隙配比5:5:2增加新的特殊时隙配比需要修改标准,目前已经将该要求写入R11版本,后续将考虑如何在R9版本中引入该要求。关键技术帧结构物理信道物理层过程特殊子帧•TD-LTE特殊子帧继承了TD-SCDMA的特殊子帧设计思路,由DwPTS,GP和UpPTS组成。•TD-LTE的特殊子帧可以有多种配置,用以改变DwPTS,GP和UpPTS的长度。但无论如何改变,DwPTS+GP+UpPTS永远等于1ms特殊子帧配置NormalCPDwPTSGPUpPTS0310119412103131121412115392693271022811121msGPDwPTSUpPTS1msGPDwPTSUpPTS•TD-LTE的特殊子帧配置和上下行时隙配置没有制约关系,可以相对独立的进行配置•目前厂家支持10:2:2(以提高下行吞吐量为目的)和3:9:2(以避免远距离同频干扰或某些TD-S配置引起的干扰为目的),随着产品的成熟,更多的特殊子帧配置会得到支持关键技术帧结构物理信道物理层过程•主同步信号PSS在DwPTS上进行传输•DwPTS上最多能传两个PDCCHOFDM符号(正常时隙能传最多3个)•只要DwPTS的符号数大于等于6,就能传输数据(参照上页特殊子帧配置)•TD-SCDMA的DwPTS承载下行同步信道DwPCH,采用规定功率覆盖整个小区,UE从DwPTS上获得与小区的同步•TD-SCDMA的DwPTS无法传输数据,所以TD-LTE在这方面是有提高的。如果小区覆盖距离和远距离同频干扰不构成限制因素(在这种情况下应该采用较大的GP配置),推荐将DwPTS配置为能够传输数据DwPTS关键技术帧结构物理信道物理层过程UpPTS•UpPTS可以发送短RACH(做随机接入用)和SRS(Sounding参考信号,详细介绍见后)•根据系统配置,是否发送短RACH或者SRS都可以用独立的开关控制•因为资源有限(最多仅占两个OFDM符号),UpPTS不能传输上行信令