12021年江苏省苏州市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算()2的结果是()A.B.3C.2D.92.如图,圆锥的主视图是()A.B.C.D.3.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B()A.B.C.D.4.已知两个不等于0的实数a、b满足a+b=0,则+等于()A.﹣2B.﹣1C.1D.25.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经2统计班级一班二班三班四班五班废纸重量(kg)4.54.45.13.35.7则每个班级回收废纸的平均重量为()A.5kgB.4.8kgC.4.6kgD.4.5kg6.已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A.m>nB.m=nC.m<nD.无法确定7.某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,根据题意可列出的方程组是()A.B.C.D.8.已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,则k的值是()A.﹣5或2B.﹣5C.2D.﹣29.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线得到△AB′C,连接B′D,若∠B=60°,AC=,则B′D的长是()A.1B.C.D.10.如图,线段AB=10,点C、D在AB上,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,再将两个3扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),则S关于t的函数图象大致是()A.B.C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上。11.全球平均每年发生的雷电次数约为16000000次,数据16000000用科学记数法可表示为.12.因式分解:x2﹣2x+1=.13.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同.第13题第14题14.如图,在Rt△ABC中,∠C=90°,则∠B=°.15.若m+2n=1,则3m2+6mn+6n的值为.416.若2x+y=1,且0<y<1,则x的取值范围为.17.如图,四边形ABCD为菱形,∠ABC=70°,在∠DCE内作射线CM,使得∠ECM=15°,垂足为F,若DF=.(结果保留根号)18.如图,射线OM,ON互相垂直,点B位于射线OM的上方,且在线段OA的垂直平分线l上,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明作图时用2B铅笔或黑色墨水签字笔.19.(5分)计算:+|﹣2|﹣32.20.(5分)解方程组:.21.(6分)先化简,再求值:(1+)•,其中x=22.(6分)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,学校从八年级全体学生中随机抽取部5分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占%;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?23.(8分)4张相同的卡片上分别写有数字0、1、﹣2、3,将卡片的背面朝上,洗匀后从中任意抽取1张;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则(请用树状图或列表等方法说明理由)24.(8分)如图,在平面直角坐标系中,四边形OABC为矩形,A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,反比例函数y=(x>0)的图象经过点B,求k的值.625.(8分)如图,四边形ABCD内接于⊙O,∠1=∠2,使得CE=AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°26.(10分)如图,二次函数y=x2﹣(m+1)x+m(m是实数,且﹣1<m<0)的图象与x轴交于A、B两点(点A在点B的左侧),且在对称轴上,OD⊥BD,OC=EC,连接ED并延长交y轴于点F(1)求A、B、C三点的坐标(用数字或含m的式子表示);(2)已知点Q在抛物线的对称轴上,当△AFQ的周长的最小值等于时,求m的值.727.(10分)如图①,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O.EF=2EH.(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,同时保持容器乙的注水流量不变,继续注水2小时后,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙﹣h甲=h,已知h(米)关于注水时间t(小时),其中MN平行于横轴,根据图中所给信息①求a的值;②求图③中线段PN所在直线的解析式.828.(10分)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H与P2F相交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.(1)四边形EBHP的面积四边形GPFD的面积(填“>”、“=”或“<”)(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.910参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算()2的结果是()A.B.3C.2D.9【分析】按照二次根式的乘法法则求解.【解答】解:()2=4.故选:B.2.如图,圆锥的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:圆锥的主视图是一个等腰三角形,故选:A.3.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B()11A.B.C.D.【分析】本题主要考查旋转的性质,旋转过程中图形和大小都不发生变化,根据旋转性质判断即可.【解答】解:A选项是原图形的对称图形故不正确;B选项是Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,故B正确;C选项旋转后的形状发生了改变,故C不正确;D选项是按逆时针方向旋转90°,故D不正确;故选:B.4.已知两个不等于0的实数a、b满足a+b=0,则+等于()A.﹣2B.﹣1C.1D.2【分析】先把所求式子通分,然后将分子变形,再根据两个不等于0的实数a、b满足a+b=0,可以得到ab≠0,再将a+b=0代入化简后的式子即可解答本题.【解答】解:+===,∵两个不等于0的实数a、b满足a+b=0,∴ab≠3,当a+b=0时,原式=,故选:A.5.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计班级一班二班三班四班五班废纸重量(kg)4.54.45.13.35.7则每个班级回收废纸的平均重量为()12A.5kgB.4.8kgC.4.6kgD.4.5kg【分析】将五个班废纸回收质量相加,再除以5即可得出答案.【解答】解:每个班级回收废纸的平均重量为×(6.5+4.6+5.1+3.3+5.7)=4.6(kg),故选:C.6.已知点A(,m),B(,n)在一次函数y=2x+1的图象上,则m与n的大小关系是()A.m>nB.m=nC.m<nD.无法确定【分析】根据点A(,m),B(,n)在一次函数y=2x+1的图象上,可以求得m、n的值,然后即可比较出m、n的大小,本题得以解决.【解答】解:∵点A(,m),n)在一次函数y=2x+1的图象上,∴m=4+1+1=2+1=4,∵6+1<6,∴m<n,故选:C.7.某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,根据题意可列出的方程组是()A.B.C.D.【分析】设甲种型号无人机x架,乙种型号无人机y架,根据“甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架”列出方程组,此题得解.【解答】解:设甲种型号无人机x架,乙种型号无人机y架.13故选:D.8.已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,则k的值是()A.﹣5或2B.﹣5C.2D.﹣2【分析】根据抛物线平移规律写出新抛物线解析式,然后将(0,0)代入,求得k的值.【解答】解:∵抛物线y=x2+kx﹣k2的对称轴在y轴右侧,∴x=﹣>0,∴k<0.∵抛物线y=x4+kx﹣k2=(x+)²﹣.∴将该抛物线先向右平移2个单位长度,再向上平移1个单位长度后﹣7)²﹣,∴将(0,0)代入﹣3)²﹣,解得k1=3(舍去),k2=﹣5.故选:B.9.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线得到△AB′C,连接B′D,若∠B=60°,AC=,则B′D的长是()A.1B.C.D.【分析】首先根据平行四边形的性质得AD∥BC,AB∥CD,可证出∠CAE=45°,∠ADC=60°,根据翻折可得∠ACB′=∠ACB=45°,∠AB′C=∠B=60°,进而可得∠AEC=90°,从而可得AE=CE=,再根据含30°角的直角三角形的性质求出B′E=DE=1,根据勾股定理即可得B′D的长.【解答】解:∵四边形ABCD是平行四边形,14∴AD∥BC,AB∥CD,∴∠CAE=∠ACB=45°,∵将△ABC沿AC翻折至△AB′C,∴∠ACB′=∠ACB=45°,∠AB′C=∠B=60°,∴∠AEC=180°﹣∠CAE﹣∠ACB′=90°,∴AE=CE=AC=,∵∠AEC=90°,∠AB′C=60°,∴∠B′AC=30°,∠DCE=30°,∴B′E=DE=1,∴B′D==.故选:B.10.如图,线段AB=10,点C、D在AB上,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),则S关于t的函数图象大致是()15A.B.C.D.【分析】先用t的代数式表示出两个扇形的半径,根据扇形的弧长等于底面圆的周长求出两个圆锥底面圆的半径,最后列方出两个底面积之后关t的函数关系式,根据关系式即可判断出符号题意的函数图形.【解答】解:∵AB=10,AC=BD=1,∴CD=10﹣1﹣5=8,∵PC=t,∴AP=t+1,PB=2﹣t+1=9﹣t,设围成的两个圆锥底面圆半径分别为r和R则:8πr=;.解得:r=,R=,∴两个锥的底面面积之和为S===,根据函数关系式可以发现该函数图形是一个开口向上的二次函数.故选:D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上。11.全球平均每年发生的雷电次数约为1