参考资料,少熬夜!高中数学知识总结精编4篇【导读指引】三一刀客最漂亮的网友为您整理分享的“高中数学知识总结精编4篇”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高中数学知识总结1复习的重点一是要掌握所有的知识点,二就是要大量的做题,编辑为各位考生带来了高中数学知识点复习:集合与映射专题复习指导一、集合与简易逻辑复习导引:这部分高考题一般以选择题与填空题出现。多数题并不是以集合内容为载体,只是用了集合的表示方法和简单的交、并、补运算。这部分题其内容的载体涉及到函数、三角函数、不等式、排列组合等知识。复习这一部分特别请读者注意第1题,阐述了如何审题,第3、5题的思考方法。简易逻辑部分应把目光集中到充要条件上。1、设集合M={1,2,3,4,5,6},S1、S2、Sk都是M的含两个元素的子集,且满足:对任意的Si={ai,bi},Sj={aj,bj},(ij,i、j{1,2,3,k})都有min{-,-}min{-,-}(min{x,y}表示两个数x、y中的较小者)。则k的最大值是()分析:审题是解题的源头,数学审题训练是对数学语言不断加深理解的过程。以本题为例min{-,-}{-,-}如何解决?我们不妨把抽象问题具体化!如Si={1,2},Sj={2,3}那么min{-,2}为-,min{-,-}为-,Si是Sj符合题目要求的两个集合。若Sj={2,4}则与Si={2,4}按题目要求应是同一个集合。题意弄清楚了,便有{1,2},{2,4},{1,3},{2,6},{1,2},{3,6},{2,3},{4,6}按题目要求是4个集合。M是6个元素构成的集合,含有2个元素组成的集合是C62=15个,去掉4个,满足条件的集合有11个,故选B。注:把抽象问题具体化是理解数学语言,准确抓住题意的捷径。2、设I为全集,S1、S2、S3是I的三个非空子集,且S1S3=I,则下面论断正确的是()(A)CIS1(S2S3)=(B)S1(CIS2CIS3)(C)CIS1CIS2CIS3=(D)S1(CIS2CIS3)分析:这个问题涉及到集合的交、并、补运算。我参考资料,少熬夜!们在复习集合部分时,应让同学掌握如下的定律:摩根公式CIACIB=CI(AB)CIACIB=CI(AB)这样,选项C中:CIS1CIS2CIS3=CI(S1S3)由已知S1S3=I即CI(S1S3)=CI=而上面的定律并不是复习中硬加上的,这个定律是教材练习一道习题的引申。所以,高考复习源于教材,高于教材。这道题的解决,也可用特殊值法,如可设S1={1,2},S2={1,3},S3={1,4}问题也不难解决。3、是正实数,设S={|f(x)=cos[(x+])是奇函数},若对每个实数a,S(a,a+1)的元素不超过2个,且有a使S(a,a+1)含2个元素,则的取值范围是。解:由f(x)=cos[(x+)]是奇函数,可得cosxcos=0,cosx不恒为0,cos=0,=k+-,kZ又0,=-(k+-)(a,a+1)的区间长度为1,在此区间内有且仅有两个角,两个角之差为:-(k1+k2)不妨设k0,kZ:两个相邻角之差为-。若在区间(a,a+1)内仅有二角,那么-2,2。注:这是集合与三角函数综合题。对应于一组,正如在数学原始概念。我们知道,有个和数字线之间真正的对应关系,点的实数的平面坐标,并下令一名男子与他的名字,一个学生,他的学校,可以看作是对应关系。对应的是两个集合A和之间的关系对于每一个元素,有以下三种情况:比索(1)B有相应的唯一元素。(2)B,有对应的一个以上的元素。(3)B是没有相应的元件。同样,对于B中的每一个元素而言,有以下三种情况:在相应的独特元素。比索(5),有相应的多个元素。比索(6)没有相应的元素。相当于在一般情况下,这些情况都可能发生。2映射参考资料,少熬夜!映射是一种特殊的对应关系,学习这个定义时,应注意以下几点:比索(1)映射为对应的集合从A,B和从A到BF由法律决定。(2)中的映射,设置一个“任何元素”有“才”在集合B这不是集合A的元素在集合B中存在的没有,或者案件多于一个的对象(即,将不会在上述(2)(3)在这两种情况下)。比索(3)在地图上,设置一个状态和B是不平等的。在一般情况下,我们并不要求B的两个元素之间的映射和A是对应于(间的(4)(5)(6)三种情况下都可能发生,即对应)的唯一元素。因此,从映射A到B并从B到A被映射有不同的要求。A的收集,B可以是相同的集合。仿佛原始图像是一个映射f,从A到B,那么A和B在图像B中的对应元素的元素称为,原来的名字图像b的关系可以表示为B=F(A),与原图像的概念和类似物,该映射可以被理解为“A中的每个元素有B中一个独特的图像”对应于这样一个特殊的。由于映射在一般情况下,B,作为元件不一定如此,因为该组(即由所有的图像形成的集合)是B的子集,记为{F(A)|a∈A}IB。高中数学知识总结2一、集合间的关系1、子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。2、真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。3、集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系二、集合的运算1、并集并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}2、交集交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”参考资料,少熬夜!(或“B交A”),即A∩B={x|x∈A,且x∈B}3、补集三、高中数学集合知识归纳:1、集合的有关概念。1)集合(集):某些指定的对象集在一起就成为一个集合(集)。其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。4)常用数集:N,Z,Q,R,N*2、子集、交集、并集、补集、空集、全集等概念。1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3、弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。4、有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。5、交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。四、数学集合例题讲解:例1已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系参考资料,少熬夜!A)M=NPB)MN=PC)MNPD)NPM分析一:从判断元素的'共性与区别入手。解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。分析二:简单列举集合中的元素。解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。=∈N,∈N,∴MN,又=M,∴MN,=P,∴NP又∈N,∴PN,故P=N,所以选B。点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。变式:设集合,,则(B)=解:当时,2k+1是奇数,k+2是整数,选B例2定义集合A*B={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为A)1B)2C)3D)4分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。解答:∵A*B={x|x∈A且xB},∴A*B={1,7},有两个元素,故A*B的子集共有22个。选D。变式1:已知非空集合M{1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为A)5个B)6个C)7个D)8个变式2:已知{a,b}A{a,b,c,d,e},求集合A.解:由已知,集合中必须含有元素a,b.集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}。评析本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个。例3已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1,参考资料,少熬夜!∴∴变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值。解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4∴b=-4,c=4,m=-5例4已知集合A={x|(x-1)(x+1)(x+2)0},集合B满足:A∪B={x|x-2},且A∩B={x|1分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。综合以上各式有B={x|-1≤x≤5}变式1:若A={x|x3+2x2-8x0},B={x|x2+ax+b≤0},已知A∪B={x|x-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。解答:M={-1,3},∵M∩N=N,∴NM①当时,ax-1=0无解,∴a=0②综①②得:所求集合为{-1,0,}例5已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。分析:先将原问题转化为不等式ax2-2x+20在有解,再利用参数分离求解。解答:(1)若,在内有有解令当时,所以a-4,所以a的取值范围是变式:若关于x的方程有实根,求实数a的取值范围。解答:点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的