塔里木油田职业技能鉴定无损检测技师培训射线检测培训教程《辐射防护》主讲曹新华塔里木油田分公司工程技术部2008.06概述辐射,即通常所称的射线,从它与物质相互作用引起的电离情况可分为两类:(致)电离辐射和非(致)电离辐射。任何与物质作用,直接作用或间接作用可引起物质电离的辐射称为电离辐射,不能引起物质电离的辐射称为非电离辐射。直接致电离粒子如电子、射线、质子、粒子等带电粒子,X射线和射线是间接致电离辐射。人们很早就认识到电离辐射对人体的危害作用,并注意到安全防护问题,辐射防护就是研究这方面的一个学科。对于工业射线检测技术,在辐射防护方面面对的主要问题是外照射防护。本章将针对工业射线检测技术,介绍辐射防护的基本概念和相关的主要内容。1.辐射量为了描述辐射与物质的相互作用,必须建立一些描述辐射本身性质的物理量及其测量单位。现在广泛使用的描述辐射的物理量主要有照射量、吸收剂量、剂量当量。1.1照射量当X射线或射线穿过空气时可以产生二次电子,二次电子和空气分子作用,使空气电离,形成带有正电荷的正离子和带有负电荷的负离子,照射量就是描述X射线或射线使空气产生电离能力的物理量。照射量定义为:X射线或射线在某一体积元的空气中产生的全部电荷被完全阻留在空气中时,产生的任一种符号的电荷的绝对值与这个小体积空气质量之比式中X——照射量;dm——体积元中空气的质量;dQ——在体积元空气中产生的一种符号电荷的电量。即,照射量表示X射线或射线在单位质量的空气中所能产生的电荷数量。照射量常用符号:“X”表示,其法定计量单位是:库仑/千克,符号为“C/kg”。照射量的专用单位是:伦琴,符号为“R”。两个单位的关系是1R=2.58×104C/kgmQXdd照射量是X射线或射线对空气定义的,它不适于其他辐射,也不适于其他物质。单位时间的照射量称为照射量率,一般用符号“”表示,即式中dt——一小的时间间隔,dX——在此时间间隔中产生的照射量(其中的“d”均为微分符号)。其单位常用C/kg·h1等表示。tXXdd1.2吸收剂量当射线辐照物体时,可以将它能量的一部分或全部传递给被辐照的物体,也即被辐照的物体可以吸收电离辐射的一部分或全部能量。但是,在同样的条件下,不同的物质吸收射线能量的情况并不相同。照射量仅仅表示了空气完全吸收X射线或射线能量的情况,而吸收剂量表示的是各种物质吸收电离辐射能量的情况。吸收剂量定义为:电离辐射授予某一体积元中物质的平均能量与该体积元中物质质量之比式中D——吸收剂量;——授予体积元的平均能量;——体积元的物质质量。mDdddmd即吸收剂量表示电离辐射传递给单位质量的被辐照物质的能量。单位是:戈瑞,符号为“Gy”。1Gy=1J/kg吸收剂量的专用单位是:拉德,符号为“rad”,两者的关系是1Gy=100rad在实际使用中常用较小的单位,如毫戈瑞(mGy)等。吸收剂量适用于任何类型的电离辐射,也适用于任何物质。但必须注意的是,吸收剂量的大小不仅相关于电离辐射本身的类型和能量,而且也相关于被辐照的物质。同样的电离辐射辐照不同的物质时,产生的吸收剂量可以不同。类似于照射量率相应地可以引入吸收剂量率:它表示单位时间的吸收剂量,常用单位是:戈瑞/小时(Gy/h)。tDDdd1.3剂量当量不同类型的电离辐射和不同的照射条件,对于生物体产生的辐射损伤即使在相同的吸收剂量之下也可以不同。为了统一评价不同类型的电离辐射对生物体产生的辐射损伤,在研究辐射防护时必须考虑不同辐射的辐射损伤差别。为此,引入辐射品质因数,常记为Q,表示吸收能量微观分布对辐射生物效应的影响;引入修正因子,常记为N,表示吸收剂量空间、时间等分布不均匀性对辐射生物效应的影响。剂量当量则定义为:吸收剂量与辐射品质因数及修正因子之积,常用符号“H”表示,即H=DQN剂量当量的单位是:希[沃特],符号为:Sv。1Sv=1J/kg剂量当量的专用单位是:雷姆,符号为“rem”,两者的关系是1Sv=100rem当辐射具有一定能谱时,可以给出平均品质因数,常简单地记为Q。一些射线的平均品质因数列于表1中。修正因子一般都取为1。同样,可以定义剂量当量率表示单位时间的剂量当量,常用单位是:希沃特/小时(Sv/h)。tHHdd表1-1.射线的平均品质因数照射类型射线种类Q外照射X射线,射线,电子1热中子3中能中子(0.02~0.1Mev)5~8快中子(0.5~10Mev)10内照射X射线,射线,电子1粒子101.4吸收剂量与照射量的关系从前面的介绍可以看到,吸收剂量和照射量不是同一概念,照射量是以空气的电离程度对辐射场的一种量度,吸收剂量给出的是被照射物质吸收辐射能量的状况,但两者存在一定的关系。直接测量吸收剂量是比较困难的,但可以通过仪器测量照射量来计算被辐照物体的吸收剂量。在标准状态下1cm3的空气的质量为0.0013g,当它受到1R的照射量照射时,产生的电离能为0.113erg,所以,空气在1R的照射量照射下吸收的能量为8.69×J/kg一般地,如果记照射场中某点的照射量为X(单位为伦琴,R),该点空气的吸收剂量为,则可给出空气的吸收剂量与照射量的关系为=8.69×X(Gy)当照射量的单位为库仑/千克(C/kg)时,它们的关系为=33.7X(Gy)这样,只要知道了辐照场中某点的照射量,就可以计算该点空气的吸收剂量。aDaDaD310310对某种物质,其吸收剂量可按下式计算式中——物体的吸收剂量(Gy);X——物体所在处的照射量(R);f——换算因子;换算因子的值相关于射线的能量,也相关于被辐照的物体的性质。从有关手册可查到人体的换算因子值,按照人体的肌肉、骨骼等的组成,通常对人体可取(X的单位为R):f=9.5×用此因子可从照射量得出全身受到均匀外照射时的近似吸收剂量。图1-1、图1-2、图1-3给出的是X射线机和射线源的照射量率曲线,这类关系曲线是计算辐射防护问题必须的数据。XfDmmD310图1-1恒压X射线机的照射量率曲线图1-2高能X射线(恒压)的照射量率曲线图1-3射线源的照射量率(源活度为0.037TBq,每次衰变发射一个射线光子)2.辐射生物效应2.1辐射生物效应分类辐射作用于生物体时由于电离作用,将造成生物体的细胞、组织、器官等的损伤,引起病理反应,这称为辐射生物效应。辐射对生物体的作用是一个极其复杂的过程,生物体从吸收辐射能量开始到产生生物效应,要经历许多不同性质的变化,一般认为将经历四个阶段的变化,即物理变化阶段、物理—化学变化阶段、化学变化阶段、生物变化阶段。辐射生物效应可以表现在受照者本身,也可以出现在受照者的后代。表现在受照者本身的称为躯体效应,出现在受照者后代时称为遗传效应。躯体效应按照显现的时间早晚又分为近期效应和远期效应。从辐射防护的观点,全部辐射生物效应可以分为两类:随机性效应、非随机性效应。随机性效应是效应的发生率(而不是严重程度)与剂量的大小有关的辐射生物效应。对于正常的低剂量照射情况,从辐射防护的目的出发,常假定随机性效应的发生率与剂量之间存在线性关系,即剂量越大随机性效应的发生率越大,并且不存在剂量阈值。非随机性效应是指存在阈值的效应,这种生物效应只有当剂量超过一定的值之后才能发生,效应的严重程度也与剂量的大小相关。因此,只要限制剂量当量就可以避免非随机性效应的发生。一些器官或组织的非随机性效应阈值如表2-1所示。表2-1部分非随机性效应的剂量阈值表2-2比较了随机性效应与非随机性效应(确定性效应)的基本特点。表2-2随机性效应与非随机性效应(确定性效应)的基本特点器官、组织效应单次照射的剂量阈值多次照射累积剂量阈值生殖腺永久性不育3Gy---眼晶体晶体混浊0.5~2.0Sv>15Gy红骨髓造血机能损伤1.5Sv>20Gy皮肤难以接受的变化--->20Gy效应类型效应发生效应严重程度随机性效应不存在剂量阈值,发生概率与剂量相关与剂量无关非随机性效应存在剂量阈值与剂量相关2.2危险度、权重因子与有效剂量当量对随机性效应进行定量描述的重要概念是危险度、权重因子。危险度定义为:单位剂量当量(1Sv)在受照器官或组织诱发恶性疾患的死亡率,或出现严重遗传疾病的发生率。不同的器官和组织的危险度不同,为表征不同器官和组织在相同剂量当量下,对人体导致辐射生物效应有害程度的差异,引入表示相对危险度的权重因子概念。权重因子定义为:各器官或组织的危险度与全身受到均匀照射的危险度之比,记为WT。表2-3列出了人体各器官和组织的危险度和权重因子。表2-3器官和组织的危险度和权重因子①选取其他五个接受剂量当量最大的器官或组织,每个器官或组织的权重因子取为0.06,其他器官或组织不计。胃、小肠、大肠上段、大肠下段可作为四个独立器官。器官、组织效应危险度(1/Sv)WT(权重因子)生殖腺二代重大遗传疾病4×1030.25乳腺乳腺癌2.5×1030.15红骨髓白血病2×1030.12肺肺癌2×1030.12骨骨癌5×1040.03甲状腺甲状腺癌5×1040.03其他组织癌5×1030.30①全身诱发癌症1×102一代遗传疾病4×103身体受到照射时,可能是多个部位或全身,不同的部位受到的照射也可能不同,为了评价这时产生的辐射生物效应,对随机效应引入了有效剂量当量。有效剂量当量定义为:器官或组织接受的剂量当量与该器官或组织的相对危险度权重因子之积,有效剂量当量一般记为,它等于:HT为器官或组织接受的剂量当量,对整个人体在非均匀照射时,有效剂量当量为:TTEHWHEHTTEHWH2.3辐射损伤辐射损伤就是电离辐射产生的各种生物效应对人体造成的危害和损伤。它可以来自人体之外的辐射照射,也可以产生于吸入体内的放射性物质的照射。造成辐射损伤的机理主要是,辐射能使生物体中的分子发生电离和激发,或者直接破坏生物体的大分子,或者通过破坏水分子,使生物体的大分子受到破坏。辐射损伤可分为两种:急性损伤、慢性损伤。急性损伤是短时间内全身受到大剂量,例如数戈[瑞]剂量的照射产生的辐射损伤。典型的急性损伤常表现为三个阶段:1)前驱期:受照者出现恶心、呕吐、等症状,约持续1~2天;2)潜伏期:一切症状消失,可持续数日或数周;3)发症期:表现出辐射损伤的各种症状,如呕吐、腹泻、出血、嗜眠、毛发脱落等,严重者导致死亡。急性损伤主要是中枢神经系统损伤、造血系统损伤、消化系统损伤,也可以造成性腺损伤、皮肤损伤等。由于急性损伤将造成严重后果,所以必须防止短时间大剂量的照射情况发生。急性损伤的主要效应特点如表2-4所示。表2-4急性损伤的主要效应剂量/Gy可能产生的效应0~0.25无可检出效应,可能无迟发效应。0.5血象轻度暂时变化,可能有迟发效应。1恶心、疲劳。2受照后24h内出现恶心、呕吐,一周潜伏期后出现毛发脱落、厌食、虚弱等(如,腹泻、喉炎)。4(半致死剂量)受照后几小时出现恶心、呕吐,二周内可见毛发脱落、厌食、虚弱、体温增高,第三周出现紫斑、口腔和咽部感染,第四周出现苍白、腹泻、迅速消瘦,50%个体可能死亡。≥6(致死剂量)受照后1~2h出现恶心、腹泻,一周出现呕吐等,体温升高,迅速消瘦,第二周出现死亡,死亡率可达80%~100%慢性损伤是长时间受到超过容许水平的低剂量的照射时,在受照后数年甚至数十年后出现的辐射生物效应。对慢性损伤目前尚难以判定辐射与损伤之间的因果关系。目前认为慢性损伤主要有白血病、癌症(皮肤癌、甲状腺癌、乳腺癌、肺癌、骨癌等)、再生不良性贫血、白内障、寿命缩短等。关于寿命缩短,在国际放射防护委员会的第26号出版物中指出:“寿命缩短效应,除了由于诱发肿瘤所造成的以外,缺乏确凿的证据,不能用于定量估计”。除了上述两种情况外,实际中存在的另一种情况是慢性小剂量照射,即长时期受到低于最大容许剂量的照射。对于这种照射的辐射生物效应,