参考资料,少熬夜!初中数学教案(通用4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“初中数学教案(通用4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!初中数学教案【第一篇】一、素质教育目标(一)知识教学点1、掌握的三要素,能正确画出。2、能将已知数在上表示出来,能说出上已知点所表示的数。(二)能力训练点1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。2、对学生渗透数形结合的思想方法。(三)德育渗透点使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。(四)美育渗透点通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。二、学法引导1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。2、学生学法:动手画,动脑概括的三要素,动手、动脑做练习。三、重点、难点、疑点及解决办法1、重点:正确掌握画法和用上的点表示有理数。2、难点:有理数和上的点的对应关系。四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片。六、师生互动活动设计师生同步画,学生概括三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)参考资料,少熬夜!三个温度计。其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃。我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—(板书课题)。教法说明从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—。再从温度计这个实物形象抽象出来研究。既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识。(二)探索新知,讲授新课1、的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃)。第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向。(相当于温度计上℃以上为正,0℃以下为负)。第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度)。教法说明教师边讲解边示范,学生跟着一起画图。培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法。让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答。大家思考准备更正或补充。初中数学教案【第二篇】参考资料,少熬夜!一、知识与技能1.能灵活列反比例函数表达式解决一些实际问题。2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。二、过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。三、情感态度与价值观1.积极参与交流,并积极发表意见。2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。教学重点掌握从物理问题中建构反比例函数模型。教学难点从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想。教具准备多媒体课件。教学过程一、创设问题情境,引入新课活动1问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。下面的例子就是其中之一。在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。(1)求I与R之间的函数关系式;(2)当电流I=时,求电阻R的值。设计意图:运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力。师生行为:可由学生独立思考,领会反比例函数在物理学中的综合应用。教师应给“学困生”一点物理学知识的引导。师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值。参考资料,少熬夜!生:(1)解:设I=kR∵R=5,I=2,于是2=k5,所以k=10,∴I=10R。(2)当I=时,R=10I==20(欧姆)。师:很好!“给我一个支点,我可以把地球撬动。”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?生:这是古希腊科学家阿基米德的名言。师:是的。公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;阻力×阻力臂=动力×动力臂(如下图)下面我们就来看一例子。二、讲授新课活动2小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。(1)动力F与动力臂l有怎样的函数关系?当动力臂为米时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?设计意图:物理学中的很多量之间的变化是反比例函数关系。因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用。师生行为:先由学生根据“杠杆定律”解决上述问题。教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系。教师在此活动中应重点关注:①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;②学生能否面对困难,认真思考,寻找解题的途径;③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣。师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题。生:解:(1)根据“杠杆定律”有Fl=1200×,得F=600l当l=时,F==400。因此,撬动石头至少需要400牛顿的力。(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有Fl=600,l=600F。参考资料,少熬夜!当F=400×12=200时,l=600200=3。3-=(米)因此,若想用力不超过400牛顿的一半,则动力臂至少要如长米。生:也可用不等式来解,如下:Fl=600,F=600l。而F≤400×12=200时。600l≤200l≥3。所以l-≥3-=。即若想用力不超过400牛顿的一半,则动力臂至少要加长米。生:还可由函数图象,利用反比例函数的性质求出。师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl(k为常数且k>0)根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力。师:其实反比例函数在实际运用中非常广泛。例如在解决经济预算问题中的应用。活动3问题:某地上年度电价为元,年用电量为1亿度,本年度计划将电价调至~元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例。又当x=0.65元时,y=。(1)求y与x之间的函数关系式;(2)若每度电的成本价元,电价调至元,请你预算一下本年度电力部门的纯收人多少?设计意图:在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题。师生行为:由学生先独立思考,然后小组内讨论完成。教师应给予“学困生”以一定的帮助。生:解:(1)∵y与x-0.4成反比例,∴设y=kx-(k≠0)。把x=,y=代入y=kx-,得-=。参考资料,少熬夜!解得k=,∴y=-=15x-2∴y与x之间的函数关系为y=15x-2(2)根据题意,本年度电力部门的纯收入为(-)(1+y)=(1+15x-2)=(1+×5-2)=×2=(亿元)答:本年度的纯收人为亿元,师生共析:(1)由题目提供的信息知y与(x-)之间是反比例函数关系,把x-看成一个变量,于是可设出表达式,再由题目的条件x=时,y=得出字母系数的值;(2)纯收入=总收入-总成本。三、巩固提高活动4一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=kg/m3时二氧化碳气体的体积V的值。设计意图:进一步体现物理和反比例函数的关系。师生行为由学生独立完成,教师讲评。师:若要求出ρ=kg/m3时,V的值,首先V和ρ的函数关系。生:V和ρ的反比例函数关系为:V=990ρ。生:当ρ=/m3根据V=990ρ,得V=990ρ==900(m3)。所以当密度ρ=1.1kg/m3时二氧化碳气体的气体为900m3。四、课时小结活动5你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得。设计意图:这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性。师生行为:学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流。教师组织学生小结。参考资料,少熬夜!反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础。用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系。板书设计17.2实际问题与反比例函数(三)1.2.用反比例函数的知识解释:在我们使用撬棍时,为什么动力臂越长越省力?设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0)。动力和动力臂分别为F,l。则根据杠杆定理,Fl=k即F=kl(k>0且k为常数)。由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小。活动与探究学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示。(1)绿化带面积是多少?你能写出这一函数表达式吗?(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?x(m)10203040y(m)过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值。结果:(1)绿化带面积为10×40=400(m2)设该反比例函数的表达式为y=kx,∵图象经过点A(40,10)把x=40,y=10代入,得10=k40,解得,k=400。∴函数表达式为y=400x。(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403,10。从图中可以看出。若长不超过40m,则它的宽应大于等于10m。初中数学教案【第三篇】教学目标1、使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;2、了解代数式的概念,使学生能说出一个代数式所表示的数量关系;参考资料,少熬夜!3、通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;4、通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。教学建议1、知识结构:本小节先回顾了小学学过的字母表示的两种实