好范文解忧愁1/13《正比例》精编教案3篇【前言】本站网友为您精挑细选分享的优秀文档“《正比例》精编教案3篇”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!小学《正比例》的教学设计1教学内容正比例教学目标使学生理解正比例的意义,会正确判断成正比例的量。重点难点重点:理解正比例的意义。难点:正确判断两个量是否成正比例的关系。教学准备投影仪。复习导入1。复习引入。用投影仪逐一出示下面的题目,让学生回答。①已知路程和时间,怎样求速度?好范文解忧愁2/13板书:=速度。②已知总价和数量,怎样求单价?板书:=单价。③已知工作总量和工作时间,怎样求工作效率?板书:=工作效率。2。引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。新课讲授1。教学例1。教师用投影仪出示例1的图和表格。学生观察上表并讨论问题。(1)铅笔的总价和数量有关系吗?(2)铅笔的总价是怎样随着数量的变化而变化的?(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。根据观察,学生可能会说出:①铅笔的。总价随着数量变化,它们是两种相关联的量。②数量增加,总价也增加;数量降低,总价也减少。③铅笔的总价和数量的比值总是一定的,即单价一好范文解忧愁3/13定。教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。2、教师出示:一列火车行驶的时间和路程如下表。引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。3、归纳概括正比例关系。①组织学生分小组讨论,上面两个例子有什么共同规律?②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。学生说一说是怎么理解正比例关系的。好范文解忧愁4/13要求学生把握三个要素:第一:两种相关联的量。第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。第三:两个量的比值一定。4、用字母表示正比例的关系。教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:(一定)5、教师:想一想,生活中还有哪些成正比例的量?学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;课堂作业完成教材第46页的“做一做”(1)~(3)。答案:(1)比值表示每小时行驶多少km。(2)成正比例。理由:路程随着时间的变化而变化。《三一刀客·》①时间增加,路程也增加,时间减好范文解忧愁5/13少,路程也随着减少;②路程和时间的比值(速度)一定。课堂小结通过这节课的学习,你有什么收获?课后作业完成练习册中本课时的练习。六年级数学《正比例》教案2教学要求:1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。教学重点:认识正比例关系的意义。教学难点:掌握成正比例量的变化规律及其特征。教学过程:一、复习铺垫1.说出下列每组数量之间的关系。好范文解忧愁6/13(1)速度时间路程(2)单价数量总价(3)工作效率工作时间工作总量2.引入新课。上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)二、自主探究:1.教学例1。出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:(1)表里有哪两种数量,这两种数量是怎样变化?(2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?(3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?引导学生进行讨论,得出:(1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:好范文解忧愁7/13两种相关联的量)面积随着宽(长)的变化而变化。(2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。(3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)2.教学例2。出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)3.概括正比例的意义。(1)综合例1、例2的共同点。提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是好范文解忧愁8/13一种量随着另一种量变化;③两种量里对应数值的比的比值一定)(2)概括正比例关系的意义。像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。4、教学例3学生看书自学,小组讨论,集体交流。(1)数量与时间是不是两种相关联的量?(2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?(3)判断数量与时间是不是成正比例?5、完成97页练一练。好范文解忧愁9/13三、巩固练习1.(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?2、做练习十一第1题。让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。3.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?一种苹果,买5千克要10元。照这样计算,买15千克要30元。四、课堂小结这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。五、家庭作业好范文解忧愁10/13练习十一第2~6题。六年级数学《正比例》教案3教学目标1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。2、培养学生概括能力和分析判断能力。3、培养学生用发展变化的观点来分析问题的能力。教学重难点重点:成正比例的量的特征及其断方法。难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。教学过程一、四顾旧知,复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?学生独立完成后师提问:你们是怎样比较的?生:我先求出每种袜子的单价,再进行比较。师:你是根据哪个数量关系式进行计算的?好范文解忧愁11/13生:因为总价=单价×数量,所以单价=总价÷数量。师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)二、引导探索,学习新知1、教学例1,学习正比例的意义。(1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。(2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。2、计算表中的数据,理解正比例的意义。(1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的`数)(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。(4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如好范文解忧愁12/13果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:3、列举并讨论成正比例的量。(1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?两种量中相对应的两个数的比值一定,这是关键。4、认识正比例图象。(课件出示例1的表格及正比例图象)(1)观察表格和图象,你发现了什么?(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?无论怎样延长,得到的都是直线。(3)从正比例图象中,你知道了什么?生1:可以由一个量的值直接找到对应的另一个量的值。生2:可以直观地看到成正比例的量的变化情况。(4)利用正比例图象解决问题。好范文解忧愁13/13不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。+三、课堂练习:1、P46“做一做”2、练习九第1、3~7