初三数学公开课教案精编4篇

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

好范文解忧愁1/20初三数学公开课教案精编4篇【前言】本站网友为您精挑细选分享的优秀文档“初三数学公开课教案精编4篇”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!初三数学教学设计1(一)教材的地位和作用《相似三角形的应用》选自人民教育出版社义务教育课程标准实验教科书中数学九年级上册第二十七章。相似与轴对称、平移、旋转一样,也是图形之间的一种变换,生活中存在大量相似的图形,让学生充分感受到数学与现实世界的联系。相似三角形的知识是在全等三角形知识的基础上的拓展和延伸,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化。在这之前学生已经学习了相似三角形的定义、判定,这为本节课问题的探究提供了理论的依据。本节内容是相似三角形的有关知识在生产实践中的广泛应用,通过本节课的学习,一方面培养学生解决实际问题的能力,另一方面增强学生对数学知识的不断追求。(二)教学目标好范文解忧愁2/201、。知识与能力:1)进一步巩固相似三角形的知识。2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题。2、过程与方法:经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。3、情感、态度与价值观:1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。(三)教学重点、难点和关键重点:利用相似三角形的知识解决实际问题。难点:运用相似三角形的判定定理构造相似三角形解决实际问题。关键:将实际问题转化为数学模型,利用所学的知识来进行解答。教法与学法(一)教法分析好范文解忧愁3/20为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:1、采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。2、贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。3、采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。(二)学法分析按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本好范文解忧愁4/20知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。教学过程一、知识梳理1、判断两三角形相似有哪些方法?1)定义:2)定理(平行法):3)判定定理一(边边边):4)判定定理二(边角边):5)判定定理三(角角):2、相似三角形有什么性质?对应角相等,对应边的比相等(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)二、情境导入胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了20年时间。原高米,但由于经过几千年的风吹雨打,顶端被风化吹蚀。所以高度有所降低。古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你好范文解忧愁5/20测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)三、例题讲解例1(教材P49例3——测量金字塔高度问题)《相似三角形的应用》教学设计分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度。解:略(见教材P49)问:你还可以用什么方法来测量金字塔的高度?(如用身高等)解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形)。(解法略)例2(教材P50练习­——测量河宽问题)好范文解忧愁6/20《相似三角形的应用》教学设计《相似三角形的应用》教学设计分析:设河宽AB长为xm,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即《相似三角形的应用》教学设计。再解x的方程可求出河宽。解:略(见教材P50)问:你还可以用什么方法来测量河的宽度?解法二:如图构造相似三角形(解法略)。四、巩固练习1、在同一时刻物体的高度与它的影长成正比例。在某一时刻,有人测得一高为米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2、小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是米,塔底中心B到积水处C的距离是40米。求塔高?五、回顾小结一)相似三角形的应用主要有如下两个方面1测高(不能直接使用皮尺或刻度尺量的)2测距(不能直接测量的两点间的距离)二)测高的方法测量不能到达顶部的物体的高度,通常用“在同一好范文解忧愁7/20时刻物高与影长的比例”的原理解决三)测距的方法测量不能到达两点间的距离,常构造相似三角形求解(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)六、拓展提高怎样利用相似三角形的有关知识测量旗杆的高度?七、作业课本习题10题、11题。教学设计说明相似应用最广泛的是测量学中的应用,在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的<>性质列出比例式求解。鉴于这一点,我设计整节课围绕测量物体高度这个问题展开,通过一个个问题的解决,一方面,促使学生了解测量物体高度的方法,从而学会设计利用相似三角形解决问题的方案;另一方面,会构造与实物相似的三角形,通过对实际问题的分析和解决,让学生充分感受到数学与现实世界的联系,教学中既发挥教师的主导作用,又注重好范文解忧愁8/20凸现学生的主体地位,“以学生活动为中心”构建课堂教学的基本框架,以“探究交流为形式”作为课堂教学的基本模式,以全面发展学生的能力作为根本的教学目标,限度地调动学生学习的积极性和主动性。初三数学教学设计2二次根式教材内容1、本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。2、本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。教学目标1、知识与技能(1)理解二次根式的概念。(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0)。(3)掌握•=(a≥0,b≥0),=•;好范文解忧愁9/20=(a≥0,b0),=(a≥0,b0)。(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。2、过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。3、情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。教学重点好范文解忧愁10/201、二次根式(a≥0)的内涵。(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用。2、二次根式乘除法的规定及其运用。3、最简二次根式的概念。4、二次根式的加减运算。教学难点1、对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用。2、二次根式的乘法、除法的条件限制。3、利用最简二次根式的概念把一个二次根式化成最简二次根式。教学关键1、潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。2、培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。单元课时划分本单元教学时间约需11课时,具体分配如下:二次根式3课时二次根式的乘法3课时二次根式的加减3课时教学活动、习题课、小结2课时好范文解忧愁11/20初三数学教学设计3图形的旋转1、了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。2、通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。3、旋转的基本性质。重点旋转及对应点的有关概念及其应用。难点旋转的基本性质。一、复习引入(学生活动)请同学们完成下面各题。1、将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。2、如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′。3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:好范文解忧愁12/20(1)平移的有关概念及性质。(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。1、请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。2、再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)3、第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做好范文解忧愁13/20旋转角。如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。下面我们来运用这些概念来解决一些问题。例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。(2)经过旋转,点A和点B分别移动到点E和点F的位置。自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B

1 / 20
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功