参考资料,少熬夜!高考数学答题技巧有哪些【优秀4篇】【导读指引】三一刀客最漂亮的网友为您整理分享的“高考数学答题技巧有哪些【优秀4篇】”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!高考数学答题技巧【第一篇】1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。2、特殊值检验法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。3、顺推破解法利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。4、极端性原则将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。5、直接法直接法就是从题设条件出发,通过正确推理、判断或运算,直接得出结论,从而作出选择的一种方法。用这种方法的学生往往数学基础比较扎实。6、估算法就是把复杂的问题转化为简单的问题,估算出答案的近似值,或者把有关数值缩小或扩大,从而对运算结果作出一个估计或确定出一个范围,达到作出判断的效果。高考数学解题技巧【第二篇】1、三角变换与三角函数的性质问题解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h;④结合性质求解。答题步骤:①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。参考资料,少熬夜!②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。2、解三角形问题解题方法:(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。答题步骤:①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。③求结果。3、数列的通项、求和问题解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。答题步骤:①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。④写步骤:规范写出求和步骤。4、离散型随机变量的均值与方差解题思路:(1)①标记事件;②对事件分解;③计算概率。(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。答题步骤:①定元:根据已知条件确定离散型随机变量的取值。②定性:明确每个随机变量取值所对应的事件。③定型:确定事件的概率模型和计算公式。④计算:计算随机变量取每一个值的概率。⑤列表:列出分布列。⑥求解:根据均值、方差公式求解其值。5、圆锥曲线中的范围问题解题思路;①设方程;②解系数;③得结论。答题步骤:①提关系:从题设条件中提取不等关系式。②找函数:用一个变量表示目标变量,代入不等关参考资料,少熬夜!系式。③得范围:通过求解含目标变量的不等式,得所求参数的范围。6、解析几何中的探索性问题解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。答题步骤:①先假定:假设结论成立。②再推理:以假设结论成立为条件,进行推理求解。③下结论:若推出合理结果,经验证成立则肯。定假设;若推出矛盾则否定假设。高考数学解题技巧【第三篇】1、函数与方程思想函数思想是指使用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系使用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,使用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想实行函数与方程间的相互转化。2、数形结合思想中学数学研究的对象可分为两绝大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方,所以建议同学们在解答数学题时,能画图的尽量画出图形,以利于准确地理解题意、快速地解决问题。3、特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这个点,同学们能够直接确定选择题中的准确选项。不但如此,用这种思想方法去探求主观题的求解策略,也同样有用。4、极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它相关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。5、分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续实行下去,这是因为被研究的对象包含了多种情况,这就需参考资料,少熬夜!要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。二、熟悉常考答题套路1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是。.。.。4、选择与填空中出现不等式的题目,优选特殊值法。5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。6、恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。7、圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。11、数列的题目与和相关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。12、立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同。13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前间中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。参考资料,少熬夜!14、概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验准确与否的重要途径。15、遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成。16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存有等。17、绝对值问题优先选择去绝对值,去绝对值优先选择使用定义。18、与平移相关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移-定要使用平移公式完成。19、关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的使用:一是垂直,一是中点在对称轴上。高考数学做题技巧【第四篇】调整好状态,控制好自我。(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。审题要慢,做题要快,下手要准题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获参考资料,少熬夜!得尽可能多的信息。找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。以上就是高考数学答题技巧,高三数学答题技巧等相关建议,希望能帮助到您!