1锂离子电池初级培训2主要内容1.概述2.锂离子基础知识3.锂离子电池的应用领域4.锂离子电池的结构5.液态锂离子电池生产工艺流程6.锂离子电池的性能指标7.国内外现状31.概述Sony公司于1989年申请了石油焦为负极、LiCoO2为正极、LiPF6溶于PC+EC混合溶剂作为电解液的二次电池体系的专利。并在1990年开始其推向商业市场。锂离子电池自1990年问世以来,因其卓越的性能得到了迅猛的发展,并广泛地应用于社会。锂离子电池以其它电池所不可比拟的优势迅速占领了许多领域,像大家熟知的移动电话、笔记本电脑、小型摄像机等等,且越来越多的国家将该电池应用于军事用途。应用表明,锂离子电池是一种理想的小型绿色电源。42.锂离子电池基础知识锂离子电池是指Li+嵌入化合物为正、负极的二次电池。正极采用锂化合物LiXCoO2、LiXFePO4或LiXMnO2负极采用锂-碳层间化合物LiXC6。电解质为溶解有锂盐LiPF6、LiAsF6等有机溶液。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌,被形象的称为“摇椅电池”。充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态。放电时则相反。5锂离子电池电化学反应机理正极反应:LiCoO2===Li1-xCoO2+xLi++xe-负极反应:C+xLi++xe-===CLix电池总反应:LiCoO2+C===Li1-xCoO2+CLix放电时发生上述反应的逆反应。6放电时锂离子不能完全移向正极,必须保留一部分锂离子在负极,以保证下次充电时的锂离子畅通嵌入通道。否则,电池寿命就相当短。为了保证碳层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是锂离子电池不能过放电。例如LiCoO2,其放电终止最低电压通常为3.0V/节,最低也不能低于2.7V/节;同时,最高充电终止应为4.2V,不能过充,否则会因正极LiCoO2中的Li离子拿走太多时,造成所谓的晶型瘫塌,而使电池表现出寿命终结状态。由此可见,锂离子充/放电控制精度要求相当高,既不能过充,也不能过放。否则都将影响电池寿命,这是由锂离子电池工作机理所决定的。7锂离子电池特点高能量密度高工作电压长循环寿命电化学特性稳定荷电保持能力强无污染无记忆效应电池的分类:一次电池(干电池)二次电池(充电电池或蓄电池)铅酸电池镉镍电池镍氢电池锂离子电池液态锂离子电池聚合物态锂离子电池另外还有燃料电池、太阳能电池等等电池常见可充电电池性能比较电池体系组成环保性能电池电压(V)能量密度充电循环自放电率负极电解液正极Wh/kgWh/L锂离子电池碳LiPF6LiMn2O4或LiCoO2绿色环保3.6130-150350-400≥5008%铅酸电池PbH2SO4PbO2铅污染严重2.030-5050-80300-50020%镍镉电池CdKOHNiOOH镉污染严重1.250-60130-150400-60025%镍氢电池储氢材料KOHNiOOH环保1.260-70190-200≥50010%液态锂离子电池与聚合物锂离子电池的异同:◆相同点:正负极活性物质相同;电池工作原理相同;单体电池工作电压相同。◆不同点:液态锂离子电池的电解液是液态的有机电解液;聚合物锂离子电池的电解质是将液态的有机电解液吸附在一种聚合物基质上,所以被称为凝胶聚合物电解质。◆优缺点比较:液态锂离子电池的功率较聚合物锂离子电池大的多,反映在电动自行车上,液态比聚合物有更强的爬坡能力;液态锂离子电池的价格较聚合物锂离子电池便宜。聚合物锂离子电池由于不存在游离的电解液,不存在漏液的情况。液态软包装、凝胶聚合物和金属壳液态锂离子电池的安全性:◆优缺点比较:采用液体电解液,因此在大电流放电等性能上不错。但由于采用软包装,包装较易损坏,在一些振动频繁的应用领域,如电动自行车等,需要谨慎。金属壳液态液态软包装凝胶型电解液液态液态凝胶态包装铝壳、钢壳铝塑膜铝塑膜爬坡能力很好很好差安全性锂离子电池的安全性需要从正极材料入手,光靠更换软包装无法从根本上解决。软包装的电池如果爆炸,不存在金属物射出物,但仍无法解决燃烧等危险。从电极材料和电解液入手,才是解决锂离子电池安全性的根本途径。12正极材料是锂离子电池中最为关键的原材料,直接决定了电池的安全性能和电池能否大型化,约占锂离子电池电芯材料成本的30%左右。按正极材料分类,目前主要有钴酸锂、锰酸锂、三元材料和磷酸铁锂四种锂电池。正极材料钴酸锂钴镍锰酸锂锰酸锂磷酸铁锂工作电压3.6V3.7V3.8V3.2V电容率(mAh/g)145170110140循环寿命(次)50050010002000价格高较高低较低安全性低较低较好好应用领域小电池小电池/小型动力电池动力电池/小电池动力电池/超大容量电池13目前商业化的锂离子电池中基本上选用层状结构的钴酸锂(LiCoO2)作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。相比较而言,钴酸锂最大的问题是安全性差(150度高温时易爆炸)、成本高(钴价约50万元/吨,含钴60%的钴酸锂超过40万元/吨)、循环寿命短。锰酸锂安全性比钴酸锂好很多,但高温环境的循环寿命差(500次)。磷酸铁锂因为高放电功率、成本低(约18~30万元/吨)、可快速充电且循环寿命長(1000次以上),在高温高热环境下的稳定性高(300度高温以上才有安全隐患),具有很好的安全性能,因而是目前最理想的动力汽车用锂电正极材料。钴镍锰酸锂,也就是三元材料,融合了钴酸锂和锰酸锂的优点,不论在小型低功率电池,还是在大功率动力电池上都有应用。143.锂离子电池的应用领域Li-ionBattery15用电器电池形态容量放电电流正极材料市场份额手机,MP3/MP4数码相机液态/聚合物~800mAh~100mA钴酸锂98%以上笔记本电脑,摄像机、玩具液态/聚合物~2Ah~1000mA钴酸锂98%以上电动自行车液态/聚合物10Ah5~10A磷酸铁锂、锰酸锂目前5%电动(混动)汽车液态/聚合物100Ah200~600A磷酸铁锂、锰酸锂试验阶段飞机、潜艇液态100Ah500A锰酸锂试验阶段军用通信液态~8Ah~1000mA钴镍锰等试验阶段164.锂离子电池的结构正极活性物质(LiCoO2\LiMnO2\LiNixCo1-xO2)导电剂、溶剂、粘合剂、基体负极活性物质(石墨、MCMB)粘合剂、溶剂、基体隔膜(PP+PE)电解液(LiPF6+DMCECEMC)外壳17方(角)形锂离子电池结构图绝缘垫底板隔膜星恒电源10Ah电芯结构示意图极柱安全阀外壳负极隔膜正极19圆柱形锂离子电池结构图密封圈限流开关隔膜20软包装锂离子电池结构图21锂离子电池结构——正极正极基体:铝箔(约0.020mm厚)正极物质:钴酸锂+碳黑+PVDF正极集流体:铝带(约0.1mm厚)22锂离子电池结构——负极负极基体:铜箔(约0.015mm厚)负极物质:石墨+CMC+SBR负极集流体:镍带(约0.07mm厚)23锂离子电池结构——隔膜材质:单层PE(聚乙烯)或者三层复合PP(聚丙烯)+PE+PP厚度:单层一般为0.016~0.020mm三层一般为0.020~0.025mm24锂离子电池结构——电解液性质:无色透明液体,具有较强吸湿性。应用:主要用于可充电锂离子电池的电解液,只能在干燥环境下使用操作(如环境水分小于20ppm的手套箱内)。规格:溶剂组成DMC:EMC:EC=1:1:1(重量比)LiPF6浓度1mol/l质量指标:密度(25℃)g/cm31.23±0.03水分(卡尔费休法)≤20ppm游离酸(以HF计)≤50ppm电导率(25℃)10.4±0.5ms/cm真空手套箱25真空手套箱系统是通过净化系统循环过滤并清除其中的活性物质(水、氧均能达到1PPM以下),使内部保持高纯度的惰性气体环境的设备。265.液态锂离子电池生产工艺流程配料卷绕注液检测包装涂布制片化成激光焊裁片27配料工艺流程正极干粉处理正极筛浆料正极混干粉正极真空搅拌负极干粉处理负极真空搅拌负极筛粉负极搅拌负极筛浆料正极涂布负极涂布正极负极28涂布工艺流程送带涂布正、负极浆料正、负极裁片烘烤收带29裁片工艺流程正极裁大片正极划线刮粉正极片辊切负极裁大片负极称重分档负极划线刮粉负极片辊切正极称重分档负极吸尘正极制片负极制片30制片工艺流程正极真空烘烤正极吸尘正极片辊压负极真空烘烤负极吸尘负极片辊压负极贴胶纸正极焊极耳负极焊极耳卷绕卷绕正极贴胶纸正极吸尘负极冲压极耳31卷绕工艺流程卷绕贴底部胶纸压芯入壳正、负极片配片隔膜隔膜裁剪测短路套绝缘片并固定负、正极极耳点焊离心入壳测短路压盖帽激光焊底部超声焊铝镍复合带32激光焊工艺流程上夹具称重分级激光焊接注液全检内阻全检气密性33注液工艺流程真空烘烤称重注液化成贴胶纸套胶圈擦洗34化成工艺流程高温烘烤分容化成测电压、贴不干胶,半成品入库清洗压钢珠高温贮存自检电压铝镍复合片点焊35检测包装工艺流程充电反充电放电客户装盒、包装全检电压清洗全检内阻全检尺寸366.锂离子电池的性能常规性能:容量电压内阻可靠性性能:循环寿命放电平台自放电贮存性能高低温性能安全性能过充短路针刺跌落浸水振动37容量电池在一定放电条件下所能给出的电量称为电池的容量,以符号C表示。常用的单位为安培小时,简称安时(Ah)或毫安时(mAh)。电池的容量可以分为理论容量、额定容量、实际容量。理论容量是把活性物质的质量按法拉第定律计算而得的最高理论值。为了比较不同系列的电池,常用比容量的概念,即单位体积或单位质量电池所能给出的理论电量,单位为Ah/kg(mAh/g)或Ah/L(mAh/cm3)。实际容量是指电池在一定条件下所能输出的电量。它等于放电电流与放电时间的乘积,单位为Ah,其值小于理论容量。额定容量也叫保证容量,是按国家或有关部门颁布的标准,保证电池在一定的放电条件下应该放出的最低限度的容量。38电压开路电压电池在开路状态下的端电压称为开路电压。电池的开路电压等于电池的正极的还原电极电势与负极电极电势之差。工作电压工作电压指电池接通负载后在放电过程中显示的电压,又称放电电压。在电池放电初始的工作电压称为初始电压。电池在接通负载后,由于欧姆电阻和极化过电位的存在,电池的工作电压低于开路电压。39内阻电流通过电池内部时受到阻力,使电池的电压降低,此阻力称为电池的内阻。电池的内阻不是常数,在放电过程中随时间不断变化,因为活性物质的组成、电解液浓度和温度都在不断地改变。电池内阻包括欧姆内阻和极化内阻,极化内阻又包括电化学极化与浓差极化。内阻的存在,使电池放电时的端电压低于电池电动势和开路电压,充电时端电压高于电动势和开路电压。40循环寿命电池在完全充电后完全放电,循环进行,直到容量衰减为初始容量的75%,此时循环次数即为该电池之循环寿命。循环寿命与电池充放电条件有关。锂离子电池室温下1C充放电循环寿命可达300~500次(行业标准),最高可达800~2000次。41放电平台锂离子电池完全充电后,放电至3.6V时的容量记为C1,放电至3.0V时的容量记为C0,C1/C0称为该电池之放电平台。行业标准1C放电平台为70%以上,现在一般可以做到83%-85%。放电平台对手机电池使用效果影响最大,关系到手机通话的声音清晰度。42自放电电池完全充电后,放置一个月。然后用1C放电至3.0V,其容量记为C2;电池初始容量记为C0;1-C2/C0即为该电池之月自放电率。行业标准锂离子电池月自放电率小于12%,现在一般为6%-8%。电池自放电与电池的放置性能有关,其大小和电池内阻结构和材料性能有关。43记忆效应记忆效应是针对镍镉电池而言的,由于传统工艺中负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成次级放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点,尽管电池本身的容量可以使电