参考资料,少熬夜!二次根式教案(4篇)【导读指引】三一刀客最漂亮的网友为您整理分享的“二次根式教案(4篇)”文档资料,供您学习参考,希望此文档对您有所帮助,喜欢就分享给朋友们吧!次根式教案【第一篇】教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的`作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。学法:1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。知识点上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。二、展示目标,自主学习:自学指导:认真阅读课本第3页——4页内容,完成下列任务:1、请比较与0的大小,你得到的结论是:________________________。2、完成3页“探究”中的填空,你得到的结论是____________________。3、看例2是怎样利用性质进行计算的。4、完成4页“探究”中的填空,你得到的结论是:____________________。5、看懂例3,有困难可与同伴交流或问老师。课时作业教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800cm2,另一张面积为450cm2,他想如果再用参考资料,少熬夜!金彩带把壁画的边镶上会更漂亮,他现在有m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈,结果保留整数)次根式教案【第二篇】学习目标1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。2、过程与方法:进一步体会分类讨论的数学思想。3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。学习重难点1、重点:准确理解二次根式的概念,并能进行简单的计算。2、难点:准确理解二次根式的双重非负性。学习内容课本第2—3页学习流程一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。二、课堂教学(一)合作学习阶段。教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。(二)集体讲授阶段。(15分钟左右)1、各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。2、教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。3、各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)参考资料,少熬夜!教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:次根式教案【第三篇】教学建议知识结构:重点难点分析:是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简。商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握。教学难点是二次根式的除法与商的算术平方根的关系及应用。二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号。由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式。教法建议:1、本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质。教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向。2、本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化。这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开。3、引导学生思考“想一想”中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维。教学设计示例参考资料,少熬夜!一、教学目标1、掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;2、会进行简单的二次根式的除法运算;3、使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;4、培养学生利用二次根式的除法公式进行化简与计算的能力;5、通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;6、通过分母有理化的教学,渗透数学的简洁性。二、教学重点和难点1、重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行。2、难点:二次根式的除法与商的算术平方根的关系及应用。三、教学方法从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的'基础上本小节内容可引导学生自学,进行总结对比。四、教学手段利用投影仪。五、教学过程(一)引入新课学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的。)学生观察下面的例子,并计算:由学生总结上面两个式的关系得:类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:(二)新课商的算术平方根。一般地,有(a≥0,b0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根。让学生讨论这个式子成立的条件是什么?a≥0,b0,对于为什么b0,要使学生通过讨论明确,因为b=0时分母为0,没有意义。引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个参考资料,少熬夜!算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算。例1化简:(1);(2);(3);解∶(1)(2)(3)说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数。例2化简:(1);(2);解:(1)(2)让学生观察例题中分母的特点,然后提出,的问题怎样解决?再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决。学生讨论本节课所学内容,并进行小结。(三)小结1、商的算术平方根的性质。(注意公式成立的条件)2、会利用商的算术平方根的性质进行简单的二次根式的化简。(四)练习1、化简:(1);(2);(3)。2、化简:(1);(2);(3)六、作业教材习题;A组1.七、板书设计二次根式的除法《二次根式》教学教案【第四篇】一、说教材的地位和作用1、内容:二次根式的加减,利用二次根式化简的数学思想解应用题,含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用。2、本节在教材中的地位与作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的`基础之上继续学习的,它也是今后学习其他数学知识的参考资料,少熬夜!基础二、说教学目标、重点、难点:1、教学目标:(1)知识与技能:1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用。2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算。理解和掌握二次根式加减的方法。3、运用二次根式、化简解应用题。4、通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题。(2)数学思考:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解。再总结经验,用它来指导根式的计算和化简(3)解决问题:先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。(3)情感态度与价值观:通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。2、教学重点、难点:二次根式化简为最简根式。二次根式的乘除、乘方等运算规律;三、说如何突出重点、突破难点:难点关键:会判定是否是最简二次根式,讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点。由整式运算知识迁移到含二次根式的运算为了突破难点,教学中我注意:1、潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。2、培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。四、学情分析:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础五、说教学教学策略和学法(一)教法分析根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。教学方法是学生分组讨论,合作探究、问题参考资料,少熬夜!教学法,尽量做到问题让学生提,答案让学生想,过程让学生写,让学生自己归纳总结。让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。(二)学法分析使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。(三)教学手段采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。六、说教学过程的设计:本课共分为五个环节:(一)、复习引入新课:利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。(二)、探索新知:本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。(三)、巩固练习:在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。(四)、总结反思:在此环节中,我让学生谈收获和体会。使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨与重