好范文解忧愁1/13高中数学教案样例、教案格式及教案范例(精编4篇)【前言】本站网友为您精挑细选分享的优秀文档“高中数学教案样例、教案格式及教案范例(精编4篇)”以供您参考学习使用,希望这篇文档对您有所帮助,喜欢的话就分享给朋友们一起学习吧!高中数学优秀教案1一、教学目标知识与技能掌握三角函数的单调性以及三角函数值的取值范围。过程与方法经历三角函数的单调性的探索过程,提升逻辑推理能力。情感态度价值观在猜想计算的过程中,提高学习数学的兴趣。二、教学重难点教学重点三角函数的单调性以及三角函数值的取值范围。教学难点好范文解忧愁2/13探究三角函数的单调性以及三角函数值的取值范围过程。三、教学过程(一)引入新课提出问题:如何研究三角函数的单调性(四)小结作业提问:今天学习了什么?引导学生回顾:基本不等式以及推导证明过程。课后作业:思考如何用三角函数单调性比较三角函数值的大小。高中数学优秀教案2教学目标:1、理解流程图的选择结构这种基本逻辑结构。2、能识别和理解简单的框图的功能。3、能运用三种基本逻辑结构设计流程图以解决简单的问题。教学方法:1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。2、在具体问题的解决过程中,掌握基本的流程图好范文解忧愁3/13的画法和流程图的三种基本逻辑结构。教学过程:一、问题情境情境:某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为其中(单位:)为行李的重量。试给出计算费用(单位:元)的一个算法,并画出流程图。二、学生活动学生讨论,教师引导学生进行表达。解算法为:输入行李的重量;如果,那么,否则;输出行李的重量和运费。上述算法可以用流程图表示为:教师边讲解边画出第10页图1-2-6。在上述计费过程中,第二步进行了判断。三、建构数学1、选择结构的概念:先根据条件作出判断,再决定执行哪一种操作的结好范文解忧愁4/13构称为选择结构。如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。2、说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。3、思考:教材第7页图所示的算法中,哪一步进行了判断?高中数学优秀教案3教学目标:1、理解并掌握曲线在某一点处的切线的概念;好范文解忧愁5/132、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化问题的能力及数形结合思想。教学重点:理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。教学难点:用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。教学过程:一、问题情境1、问题情境。如何精确地刻画曲线上某一点处的变化趋势呢?如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。因此,在点P附近我们可以用这条直线来代替曲线,好范文解忧愁6/13也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。2、探究活动。如图所示,直线l1,l2为经过曲线上一点P的两条直线,(1)试判断哪一条直线在点P附近更加逼近曲线;(2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?(3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?二、建构数学切线定义:如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?三、数学运用例1试求在点(2,4)处的切线斜率。解法一分析:设P(2,4),Q(xQ,f(xQ)),好范文解忧愁7/13则割线PQ的斜率为:当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。从而曲线f(x)=x2在点(2,4)处的切线斜率为4。解法二设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。练习试求在x=1处的切线斜率。解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。小结求曲线上一点处的切线斜率的一般步骤:(1)找到定点P的坐标,设出动点Q的坐标;(2)求出割线PQ的斜率;(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。思考如上图,P为已知曲线C上的一点,如何求好范文解忧愁8/13出点P处的切线方程?解设所以,当无限趋近于0时,无限趋近于点处的切线的斜率。变式训练1。已知,求曲线在处的切线斜率和切线方程;2。已知,求曲线在处的切线斜率和切线方程;3。已知,求曲线在处的切线斜率和切线方程。课堂练习已知,求曲线在处的切线斜率和切线方程。四、回顾小结1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。2、根据定义,利用割线逼近切线的方法,可以求出曲线在一点处的切线斜率和方程。五、课外作业高中数学教案模板4教学目标(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;好范文解忧愁9/13(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。教学建议一、知识结构二、重点难点分析本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数好范文解忧愁10/13是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。三、教法建议①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一好范文解忧愁11/13排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:ab,ac,ba,bc,ca,cb,其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才(三一刀客☆)是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。要特别注意,不加特殊说明,本章不研究重复排列问题。③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用好范文解忧愁12/13的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。⑤学生在开始做排列应用题的作业时,应要求他们好范文解忧愁13/13写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。