XXXX秋季第3讲机械制图北京航空航天大学出版社

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

aaabbb●●●●●●2·2直线的投影ProjectionofLine两点确定一条直线,将两点的同名投影用直线连接,就得到直线的同名投影。(Projectionsof2pointsdeterminetheprojectionofline.)⒈直线对一个投影面的投影特性(Tosingleprojectionplane)一、直线的投影特性CharacteristicsAB●●●●ab直线垂直于投影面投影重合为一点积聚性Point-wiseprojection直线平行于投影面投影反映线段实长存真性ab=ABTruelengthprojection直线倾斜于投影面投影比空间线段短ab=ABcosαForeshortenprojection●●AB●●abαAMB●a≡b≡m●●●二、直线在三个投影面中的投影特性Linesprojectedtothe3-projection-plane投影面平行线LinesparalleltoaProjectionplane平行于某一投影面而与其余两投影面倾斜投影面垂直线Linesperpendiculartoaprojectionplane正平线Frontallines(∥V面)侧平线Profilelines(∥W面)水平线Horizontallines(∥H面)正垂线(W-perpendicularlines)(⊥V面)侧垂线(W-perpendicularlines)(⊥W面)铅垂线(H-perpendicularlines)(⊥H面)一般位置直线GeneralPositionlines与三个投影面都倾斜的直线Inclinedtoallthreeprojectionplanes统称特殊位置直线(Specialpositionlines)垂直于某一投影面baababbaabba⑴投影面平行线LinesparalleltoaProjectionplane①在其平行的那个投影面上的投影反映实长,并反映直线与另两投影面倾角的实大。②另两个投影面上的投影平行于相应的投影轴。Whenalineisparalleltoaprojectionplane,itsprojectionuponthatplanewillbethetruelengthoftheline.Itsprojectionontheadjacentplaneswillbeparalleltotheprojectionaxis.水平线Horizontalline侧平线Profileline正平线Frontallineγ投影特性:与H面的夹角(AnglewithH):α与V面的角:β与W面的夹角:γ实长(Truelength)实长实长βγααβbaaabb⑵投影面垂直线Linesperpendiculartoaprojectionplane铅垂线H-perpendicularline正垂线V-perpendicularline侧垂线W-perpendicularline②另外两个投反映线段实长。且垂直于相应的投影轴。①在其垂直的投影面上,投影有积聚性。投影特性:●c(d)cddc●aba(b)ab●efefe(f)Whenalineisperpendiculartoaprojectionplane,itappearsasapointuponthatplane.Itsprojectionontheadjacentplaneswillbeperpendiculartothecorrespondingprojectionaxisandwillrepresentthetruelength.⑶一般位置直线Generalpositionlines投影特性:三个投影都缩短。即:都不反映空间线段的实长及与三个投影面夹角的实大,且与三根投影轴都倾斜。Allthreeprojectionsareforeshortened.Thatis:Itstruelengthandangleswillnotberepresentedinanyoftheseprojections.abbaba三、直线上的点Pointsonlines◆若点在直线上,则点的投影必在直线的同名投影上。Ifapointinspaceliesonaline,theprojectionsofthatpointalsolieonthecorrespondingprojectionsoftheline.判别方法:ABCVHbccbaa点C不在直线AB上(No)例1:判断点C是否在线段AB上。DetermineifthepointConlineABabcabc①c②abcab●点C在直线AB上(Yes)例2:判断点K是否在线段AB上。DetermineifthepointKonlineABab●k因k不在ab上,故点K不在AB上。kisnotonab,thenKliesonlineAB.abkabk●●◆当直线的投影垂直于投影轴时有例外出现,这种情况可增加第三投影。Exceptionmayoccurtospecialpositionline.Aprofileprojectionisaddedinthiscase.四、一般位置直线的实长与倾角TruelengthandangleofagenerallineOXHVaaaxb`bbx倾角:直线与在某一投影面上的投影间的夹角为直线与该面的倾角Anglebetweenlineanditsprojectionwillbeitsanglewiththatprojectionplane.OXYZHVaAaaxb`BbbxOXYZHVa`AaWa``b`Bbb``abAH投影立标差⊿Zαα直角三角形法RightTriangleMethodabAH投影立标差⊿ZαabAV投影远标差⊿YβabAW投影横标差⊿Xγ斜边(Beveledge)--实长(Truelength)斜边与直角边夹角--倾角Anglebetweenthebeveledgeandright-angleedge(Angle)规律(Rule):两直角边(tworight-angleedges)投影(Projection)坐标差(Coordinatedifference)直线与投影轴的夹角(Anglebetweenlineandprojectionaxis)OXYZHVaAaWabBbbabAH投影立标差⊿ZααZZabAH投影立标差⊿ZαabAV投影远标差⊿YβabAW投影横标差⊿Xγ斜边(Beveledge)--实长(Truelength)斜边与直角边夹角--倾角Anglebetweenthebeveledgeandright-angleedge--Anglebetweenlineandplane)规律(Rule):两直角边(tworight-angleedges)投影(Projection)坐标差(Coordinatedifference)斜边与另一直角边夹角--直线与投影轴夹角Anglebetweenthebeveledgeandtheotherright-angleedge--AnglebetweenlineandaxisZYX3.作图举例(Problems)例1.已知直线段AB与H面的倾角α=30º,其他条件如图,完成AB的另一投影。CompletetheotherprojectionoflineABwithα=30ºa`b`abα=30ºZB1例2.已知直线段AB与H面的倾角α=30º,其他条件如图,完成AB的另一投影。CompletetheotherprojectionoflineABwithα=30ºa`b`abα=30ºZA1H投影b1α实长Z空间两直线的相对位置分为:平行Parallel、相交intersecting、交叉skew。⒈两直线平行Parallellines投影特性:Projectioncharacteristics空间两直线平行,则其各同名投影必相互平行,反之亦然。Iftwolinesinspaceareparallel,theirprojectionsonanyprojectionplanewillbeparallel,andviceversa.aVHcbcdABCDbda五、空间两直线的相对位置Relativepositionoftwolinesabcdcabd例1:判断图中两条直线是否平行。ABParallelwithCD?对于一般位置直线,只要有两个同名投影互相平行,空间两直线就平行。Twogenerallinesareparallelinspaceiftheirrespectiveprojectionsontwoprojectionplanesareparallel.AB//CD①bdcacbaddbac对于特殊位置直线,只有两个同名投影互相平行,空间直线不一定平行。Forspecialpositionlines,theyarenotnecessarilyparallelifonlytwoprojectionsappeartobeparallel.求出侧面投影后可知:AB与CD不平行。ABandCDnotparallel例2:判断图中两条直线是否平行。ABParallelwithCD?②求出侧面投影Obtaintheprofileprojection如何判断?Sohowto?HVABCDKabcdkabckdabcdbacdkk⒉两直线相交Intersectinglines判别方法:若空间两直线相交,则其同名投影必相交,且交点的投影必符合空间一点的投影规律。Iftwolinesintersectinspace,theircorrespondingprojectionsalsointersect.交点是两直线的共有点(intersectingpointistheonewhichtwolinesshare)●●cabbacdkkd例:过C点作水平线CD与AB相交。ConstructahorizontallineCDintersectingwithAB.先作正面投影Vprojectionfirstdbaabcdc1(2)3(4)⒊两直线交叉Skewlines投影特性Projectioncharacteristics★同名投影可能相交,但“交点”不符合空间一个点的投影规律。Correspondingprojectionsmaybeintersecting,but“intersectingpoints”don’tabidebytheprojectionruleofonespatialpoint.★“交点”是两直线上的一对重影点的投影,用其可帮助判断两直线的空间位置。“intersectingpoints”aretheprojectionsofthetwooverlappedprojectionpoints,whichcanbeusedforjudgingthespatialpositionsoftwolines.●●Ⅰ、Ⅱ是V面的重影点(Overlappedprojectionpoints)Ⅲ、Ⅳ是H面的重影点为什么?Why?12●●34●●两直线相交吗?Intersectinglines?六、两直线垂直相交(或交叉)Perpendicularityoflines直角边投影的规律:Thetheoremofperpendicularity若直角有一边平行于投影面,则它在该投影面上的投影仍为直角。Ifoneoftwoperpendicularlinesisparalleltoaprojectionplane,theprojectionsofbothlinesonthatplanewillbeat90ºtoeachother.设直角边BC//H面因BC

1 / 31
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功