三角函数专题训练参考答案1.A.2.A试题分析:根据正弦定理可得sinsinabAB即sinsinAaBb,而,(0,)AB,所以sin0,sin0AB,所以由sinsinsin1sinAABB即1ab,也就是ab,根据三角形中大边对大角的原理可得AB,选A.3.A试题分析:设ABx,则在RtABC中,tanxCB,所以tanxBDa,又因为在RtABD中,tanxBD,所以tantanxxBDa,得tantan11tantantantanaaxsinsinsinsinsincossincossin()aa,选A.4.B5.B6.65试题分析:由余弦定理得:2221461011cos214614C,在三角形中53sin14C,再由正弦定理得:sin531456.sin1422ACCABB7.1764分析:(1)由题意得:2222212sin2SabcabcbcbcA,根据余弦定理得:2222cosabcbcA,得2222cosabcbcA,代入上式得:12cos2sin2bcAbcbcA即sin44cosAA,代入22sincos1AA得:8sin17A,∵8bc,∴8cb,∴28144464sin82171717217bbSbcAbcbb,所以,面积S的最大值为6417.8试题解析:解:在ABC中,090,BCAABC由正弦定理得:BCAABBACBCsinsinsincossin90sin0aAB则分4sinsincossinsincossinaaaaABh设xhCEDhhBEDxDEtan,20tan,CEDBEDCEDBEDBECtantan1tantantan20102020201202hhxhhxxhhx当且仅当xhhx20即20hhx时,BECtan最大,从而BEC最大由题意,106020hh,解得分10180h9.试题解析:(1)∵2sin(2)sin(2)sinaAbcBcbC,∴根据正弦定理得22(2)(2)abcbcbc,即222abcbc,∴2221cos22bcaAbc,又0A,∴23A(2)由(1)222abcbc根据正弦定理得222sinsinsinsinsinABCBC,即223sinsinsinsin=4BCBC①,又∵sinsin1BC②,联立①,②,得1sinsin2BC,又∵3ACB,∴0,033BC,∴BC,故ABC是等腰的钝角三角形.