第一章行《线性代数》单元自测题列式专业班级姓名学号一、填空题:1.设12335445ijaaaaa是五阶行列式中带有负号的项,则i=____2____;j=_____1____。2.在四阶行列式中,带正号且包含因子23a和31a的项为_____44312312aaaa__。3.在五阶行列式中,项2543543112aaaaa的符号应取__________。4.在函数xxxxxxf21123232101)(中,3x的系数是1____。5.行列式600300301395200199204100103____2000______。一、计算下列各题:1.设4321630211118751D,求44434241AAAA的值解:根据行列式展开定理的推论,有44434241AAAA4424432342224121AaAaAaAa=02.计算abbababa000000000000解:由行列式展开定理有abbababa0000000000001110)1(nababaa11000)1(nnbababbnnnba1)1(3.计算n222232222222221解:n222232222222221)加到各列上第二列乘(1nnn2020012000200021)1()1(202020200120002nnn)!2(2n4.计算abbbbabbbbabbbba解:abbbbabbbbabbbba各行加到第一行上abbbbabbbbabbnabnabnabna)1()1()1()1(abbbbabbbbabbna1111])1([一列从第二列开始各列减第babbabbabbna0000000001])1([1)(])1([nbabna5.设51234555533325422221146523D,求3132333435,AAAAA。解:由展开定理推论,0335553534333231AAAAA,⑴0112223534333231AAAAA,⑵由)1(和)2(联立得0333231AAA,03534AA6.计算4443332225432543254325432D解:第一列提出一个2,第二列提出一个3,第三列提出一个4,第四列提出一个5。4443332225432543254325432D3333222211115431543154311111120利用范德蒙行列式)()()()()()(453534151413120=57607.计算122110...0001...00000...1...nnnnxxDxaaaaax解:容易计算得1k时,11axD,2k时,2122axaxD,3k时,322133axaxaxD,故由此推断nDniininxax1。下用数学归纳法证明:设1nk时,11)1(11niininnxaxD,则nD111)1()1(nnnnaDxnniininaxaxx][11)1(1niininxax1