一、概率的正确理解P113思考:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?有三种可能:“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”探究全班同学各取一枚硬币,连续两次抛掷,观察它落地后的朝向,并纪录结果.重复上面过程10次.计算三种结果的频率,你有什么发现?发现“两次均正面朝上”的频率与“两次均反面朝上”的频率大致相等;“正面朝上、反面朝上各一次”的频率大于“两次均正面朝上”(“两次均反面朝上”)的频率。事实上,“两次均正面朝上”的概率为0.25,“两次均反面朝上”的概率也为0.25,“正面朝上、反面朝上各一次”的概率为0.5。随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机性中的规律性,我们就能比较准确的预测随机事件发生的可能性。随机事件的随机性与规律性:思考如果某种彩票的中奖概率为,那么买1000张这种彩票一定能中奖吗?(假设该彩票有足够多的张数。)不一定,而有的人认为一定中奖,那么他的理由是什么呢?11000注意:这个错误产生的原因是,有人把中奖概率理解为共有1000张彩票,其中有1张是中奖号码,然后看成不放回抽样,所以购买1000张彩票,当然一定能中奖。而实际上彩票的总张数远远大于1000。每张彩票中奖是随机的,1000张彩票有几张中奖也是随机的,但这种随机性具有规律性。11000概率在实际问题中的应用游戏的公平性决策中的概率思想天气预报的概率解释遗传机理中的统计规律2、游戏的公平性思考:你有没有注意到在乒乓球、排球等体育比赛中,如何确定由哪一方先发球?你觉得对比赛双方公平吗?结论:在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的.这就是说,游戏是否公平只要看每人获胜的概率是否相等.探究某中学从高一年级12个班中选2班代表学校参加某项活动。一班必须参加,另从2到12班选一个班。有人提议用以下方法选:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?1点2点3点4点5点6点1点2345672点3456783点4567894点56789105点678910116点789101112这种方法不公平。因为从这个表中可以看到有些班级出现的概率比较高。每个班被选中的可能性不一样。3、决策中的概率思想P116思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地均匀吗?为什么?阅读课文P116极大似然法的思想:如果我们面临的是从多个可选答案中挑选正确答案的决策任务,“使得样本出现的可能性最大”可以作为决策的准则.这种判断问题的方法称为极大似然法,极大似然法是统计工作中最重要的统计思想方法之一.4、天气预报的概率解释思考:某地气象局预报说,明天本地降水概率为70%。你认为下面两个解释中哪一个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨;(2)明天本地下雨的机会是70%。例如,如果天气预报说“明天降水的概率为90%”呢?降水概率的大小只能说明降水可能性的大小,概率值越大只能表示在一次试验中发生的可能性越大。在一次试验中“降水”这个事件是否发生仍然是随机的。尽管明天下雨的可能性很大,但由于“明天下雨”是随机事件,因此仍然有可能不下雨。阅读课文P117孟德尔(GregorMendel,1822-1884)孟德尔是现代遗传学之父,是这一门重要生物学科的奠基人。1865年发现遗传定律。5、试验与发现5、试验与发现性状显性隐性显性:隐性子叶的颜色黄色6022绿色20013.01:1种子的性状圆形5474皱皮18502.96:1茎的高度长茎787短茎2772.84:1豌豆杂交试验的子二代结果6、遗传机理中的统计规律纯黄色豌豆YY纯绿色豌豆yy第一代第二代黄色Yy杂交黄色Yy杂交黄色Yy纯黄色豌豆YY纯绿色豌豆yy概率412141自我评价与课堂练习:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对BC