Charpter4-24.2.RheologyandPhysicalTests4.2.1IntroductionPolymersareviscoelasticmaterials,meaningthattheycanactasliquids,the“visco”portion,andassolids,the“elastic”portion.Descriptionoftheviscoelasticpropertiesofmaterialsgenerallyfallswithintheareacalledrheology.Determinationoftheviscoelasticbehaviorofmaterialsgenerallyoccursthroughstress/strainandrelatedmeasurements.Whetheramaterialbehavesasaviscousoranelasticmaterialdependsontemperature,theparticularpolymeranditspriortreatment,polymerstructure,andtheparticularmeasurementorconditionsappliedtothematerial.Theparticularpropertydemonstratedbyamaterialundergivenconditionsallowspolymerstoactassolidorviscousliquids,asplastics,elastomers,orfibers,etc.Thischapterdealswiththeviscoelasticpropertiesofpolymers.4.2.流变学和物理测试4.2.1介绍聚合物是粘弹性材料,这意味着它们可以作为液体,在“粘”的部分,和作为固体的“弹性”的部分。的材料的粘弹性性质的描述一般落在称为流变学的区域内。材料的粘弹性特性的测定通常是通过应力/应变和相关的测量。是否一个材料表现为粘性或弹性材料依赖于温度,特定的聚合物和它的前处理,聚合物结构,以及特定的测量或施加到材料的条件。在一定条件下通过材料表现出的特定属性允许聚合物作为固体或粘稠液体,如塑料,弹性体,或纤维等本章涉及聚合物的粘弹性能。4.2.2RheologyThebranchofsciencerelatedtothestudyofdeformationandflowofmaterialswasgiventhenamerheologybyBingham,whomsomehavecalledthefatherofmodernrheology.TheprefixrheoisderivedfromtheGreektermrheos,meaningcurrentorflow.Thestudyofrheologyincludestwovastlydifferentbranchesofmechanicscalledfluidandsolidmechanics.Thepolymerchemistisusuallyconcernedwithviscoelasticmaterialsthatactasbothsolidsandfluids.Theelasticcomponentisdominantinsolids,hencetheirmechanicalpropertiesmaybedescribedbyHooke’slaw[Eq.(4.1)],whichstatesthattheappliedstress(s)isproportionaltotheresultantstrain(γ)butisindependentoftherateofthisstrain(dγ/dt).(4.1)Stressisequaltoforceperunitarea,andstrainorelongationistheextensionperunitlength.Foranisotropicsolid,i.e.,onehavingthesamepropertiesregardlessofdirection,thestrainisdefinedbyPoisson’sratio,V=γ1/γw,thepercentagechangeinlongitudinalstrain,γl,tothepercentagechangeinlateralstrain,γw.4.2.2流变科学与变形和流动的材料研究的分支被宾汉姆,其中一些人所谓的现代流变之父给出的名称流变。前缀流变是从希腊词rheos,意思是电流或流。该studyof流变包括两个截然不同的力学分支称为流体和固体力学。该聚合物化学家通常关注的是作为固体和液体粘弹性材料。该弹性组件是占主导地位的固体,因此它们的机械性能可以用胡克定律[方程(4.1)],其中指出,所施加的应力(s)是正比于所得到的应变(γ)却是独立的这一菌株(dγ/dt)的速率的。(4.1)应力等于每单位面积的发力,应变或伸长率是每单位长度的延伸。对于各向同性的固体,即一个具有相同的性质与方向无关,该菌株是通过泊松比定义,V=γ1/γw,,变动的百分比纵向应变,γl,以百分比变化的侧向应变,γw。Whenthereisnovolumechange,aswhenanelastomerisstretched,Poisson’sratiois0.5.ThisvaluedecreasesastheTgofthesubstanceincreasesandapproaches0.3forrigidpoly(vinylchloride)(PVC)andebonite.Forsimplicity,thepolymerswillbeconsideredtobeisotropicviscoelasticsolidswithaPoisson’sratioof0.5,andonlydeformationsintensionandshearwillbeconsidered.Thus,ashearmodulus(G)willusuallybeusedinplaceofYoung’smodulusofelasticity(E)[refertoEq.(4.2),Hooke’slawforshear],whereE≈2.6GattemperaturesbelowTg.Themoduli(G)forsteel,HDPE,andhevearubber(NR)are86,0.087,and0.0006m-2,respectively.(4.2)(4.3)Theviscouscomponentisdominantinliquids,hencetheirflowpropertiesmaybedescribedbyNewton’slaw[Eq.(5.3)](whereisviscosity),whichstatesthattheappliedstresssisproportionaltotherateofstraindγ/dt,butisindependentofthestrainorappliedvelocitygradient.Thesymbolγissometimesusedforstrainrate..当没有体积变化,因为当弹性体被拉伸,泊松比为0.5。此值降低的Tg的物质的增加和刚性聚(氯乙烯)(PVC)和硬橡胶接近0.3。为简单起见,聚合物将被认为是各向同性的粘弹性固体,0.5的泊松比,并且在拉伸和剪切变形仅会考虑。因此,剪切模量(G)通常会被取代杨氏弹性模量(E)的[参见式(4.2),胡克定律剪切],其中E≈2.6G在温度低于Tg。模量(G)对钢材,高密度聚乙烯和橡胶树橡胶(NR)是86,0.087和0.0006m-2,分别。(4.2)(4.3)粘性成分是占主导地位的液体中,因此它们的流动性可通过牛顿定律[公式(5.3)](其中是粘度),其中指出,所施加的应力s正比于应变的dγ/dt的速率,但是是独立的应变或应用速度梯度。符号γ有时也用于应变速率。.BothHooke’sandNewton’slawsarevalidforsmallchangesinstrainorrateofstrain,andbothareusefulinstudyingtheeffectofstressonviscoelasticmaterials.TheinitialelongationofastressedpolymerbelowTgisthereversibleelongationduetoastretchingofcovalentbondsanddistortionofthebondangles.Someoftheveryearlystagesofelongationbydisentanglementofchainsmayalsobereversible.However,therateofflow,whichisrelatedtoslowerdisentanglementandslippageofpolymerchainspasteachother,isirreversibleandincreases(andηdecreases)asthetemperatureincreasesinaccordancewiththefollowingArrheniusequation(4.4)inwhichEistheactivationenergyforviscousflow.(4.4)这两个虎克和牛顿定律是有效的应变或应变速率的细小变化,无一不是学习压力对粘弹性材料的影响非常有用。低于Tg一个强调聚合物的初始伸长克是可逆伸长,由于拉伸的共价键和键角的失真。一些通过延伸链的解缠结的早期阶段也可能是可逆的。然而,流动速率,这是关系到较慢的解缠结和聚合物链经过彼此的滑移,是不可逆的增加(和η减小)随着温度的升高按照下列Arrhenius方程(4.4),其中E是活化能为粘流。(4.4)ItisconvenienttouseasimpleweightlessHookean,orideal,elasticspringwithamodulusofGandasimpleNewtonian(fluid)dashpotorshockabsorberhavingaliquidwithaviscosityofηasmodelstodemonstratethedeformationofanelasticsolidandanidealliquid.Thestress-straincurvesforthesemodelsareshowninthefollowingfigure.FigureStress–strainplotsfor(a)aHookeanspringwhereE[Eq.(4.1)]istheslope,and(b)aNewtoniandashpotwheresisconstant[Eq.(4.3)].可以很方便地使用一个简单的失重虎克,或理想的,有弹性的弹簧带G的模数和简单的牛顿(流体)阻尼延迟器或减振器具有η的粘度的液体作为模型来演示的弹性固体的变形和理想的液体。应力-应变曲线,这些模型都显示如下图。图的应力-应变曲线为(a)在虎克弹簧式中E[公式(4.1)]是斜率,以及(b)一个牛顿减震器,其中s是常数[公式(4.3)]Ingeneralterms,theHookeanspringrepresentsbondflexingwhiletheNewtoniandashpotrepresentschainandlocalsegmentalmovement.Itiscustomarytoattempttorelatestress-strainbehaviortocombinationsofdashpotsa