《数学史选讲》第一讲早期的算术与几何纸草书是研究古埃及数学的主要来源莱因德纸草书:最初发现于埃及底比斯古都废墟,1858年为苏格兰收藏家莱因德购得,现藏于伦敦大英博物馆.又称阿姆士纸草书,阿姆士在公元前1650年左右用僧侣文抄录了这部纸草书,据他加的前言知,所抄录的是一部已经流传了两个世纪的著作.含84个数学问题.莫斯科纸草书:又称戈列尼雪夫纸草书,1893年由俄国贵族戈列尼雪夫在埃及购得,现存于莫斯科博物馆.产生于公元前1850年前后,含有25个数学问题.古埃及的计算技术具有迭加的特征,乘除法运算,往往用连续加倍来完成.由于方法较为繁复,古埃及算术难以发展到更高的水平.相对于算术,古埃及的几何具有更高的成就.古代埃及人留下了许多气势宏伟的建筑,可以说明古埃及几何学的发达.埃及几何产生于土地测量,是一种实用几何.对面积、体积的计算,他们给出了一些计算的法则,有准确的也有粗略的.在莫斯科纸草书中有一个正四棱台体积的计算所用的公式,用现在的符号表示是这是埃及几何中最出色的成就之一.六十进制位值制记数法。长于计算,编制了许多数表:乘法表、倒数表、平方表、立方表、平方根表、立方根表、甚至有特殊的指数(对数)表。能解二次方程。中国古代数学的起源可以上溯到公元前数千年.《史记》中记载,夏禹治水,“左规矩,右准绳”.这可以看作是中国古代几何学的起源.在殷商甲骨文中已经使用了完整的十进制记数法,春秋战国时代又出现了十进位值制筹算记数法.而战国时代的《考工记》、《墨经》、《庄子》等著作中则探讨了许多抽象的数学概念,并记载了大量实用几何知识.《周易》是中国古代专讲卜筮的书,也可以看作是古人探索自然的朴素的哲学著作,约成书于殷商时期。《周易》由《易经》和《易传》两部分组成,先有《易经》,后有《易传》,两部分成书的时间相距七八百年。《易经》包括古代占卜的卦辞及爻辞,《易传》由《系辞》、《说卦》等十篇文章组成,是对《易经》中卦辞及爻辞的解释卜筮是原始人类共有的社会现象。中国古代常用龟甲和兽骨作为占卜工具,以决定事情的吉凶。筮,是按一定的规则得到特定的数字,并用它来预测事情的吉凶。《周礼》称:“凡国之大事,先筮后卜。”《史记·龟策列传》则说:“王者决定诸疑,参与卜筮,断以蓍龟,不易之道也。”筮的工具起初是竹棍(以后出现的筹算数码则形成了中国古代用竹棍表示数字的传统),后来改用蓍草----一种有锯齿的草本植物。在中国古代众多的儒、道典籍中,《周易》是包含数学内容最丰富的著作,因而对中国古代数学家产生了极大的影响。比如,刘徽在《九章算术注》的序中就写道:“昔伏羲氏始作八卦,以通神明之德,以类万物之情。作九九之数,以合六爻之变。”实际上就把数学方法与《周易》中的六爻、八卦等内容联系起来了。————乾—巽—离--艮--—--—----------坤--震--坎—兑—--—--—计算机的发明与《周易》中的八卦有着十分密切的联系。众所周知,现代电子计算机最基本的数学基础是二进制数。二进制符号是德国数学家莱布尼茨(Leibniz,1646—1716)发明的。莱布尼茨于1679年撰写了《二进制算术》,阐述了二进制理论。莱布尼茨自称,他之所以会想到二进制数,就是因为受到了八卦符号的启发。他还说:“可以让我加入中国籍了吧”。《周易》中的另一重要概念是太极。《周易》中写道:“易有太极,是生两仪,两仪生四象,四象生八卦。”太极即太一,这段话讲的是八卦产生的原理,也试图解释天地造分,化成万物的原理。后经宋代陈抟的发展,便有了太极图。《周易》中另一个与数学相关的内容是“河图洛书”。《周易》中有“河出图,洛出书,圣人则之”的记载。以后,孔安国等人又把河图洛书与八卦及九数联系起来。孔安国认为:“河图者,伏羲氏王天下,龙马出河,遂则其文以画八卦。洛书者,禹治水时,神龟负文,而列于背,有数至九,禹遂因而第之,以成九类。”也就是说,在古人看来,八卦与九数实出于河图洛书。数和形是数学最早的研究对象,考古研究发现,人类在5万年前就已经有了一些计数的方法。现代人的研究认为,人类数的概念的发展过程是,先有原始的数感,再形成一一对应的计数方法,最后通过集合的等价关系建立抽象的数的概念。《易·系辞》中载:“上古结绳而治,后世圣人易之以书契”。结绳记数,是指在绳子上打一个结表示一个数或一件事,绳结的多少,根据事物多少而定。而所谓的“书契”,就是刻划,“书”是划痕,“契”是刻痕。古人常常在各种动物骨头、金属、泥版上刻痕记数。如中国殷商时期常将文字刻划在牛的肩胛骨或龟甲上,故称甲骨文。从刻划记数,人类很自然地过渡到刻出数的符号,并进而创造出第一批数字。古代中国、古埃及、巴比伦等民族,均在公元前5000年前后就有了记数符号。由于古人用手指作为计数的参照物十分方便,因而许多民族都不约而同地使用了十进制计数法。当然也存在着少量的其它进位制,如5进制、12进制、16进制、20进制、60进制等。公元前500年左右的战国时代,中国人创造了具有十进位值制特征的筹算数码。筹算数字的摆放方法规定,个位用纵式,十位用横式,百位用纵式,千位用横式,万位又用纵式,如此纵横相间,以免发生误会。并规定用空位表示零。到了13世纪,中国数学家又明确地用“”表示零,从而使中国记数法完全位值化。这是一个深远而又重要的思想,它今天看来如此简单,以致我们忽视了它的真正伟绩。但恰恰是它的简单性以及对一切计算都提供了极大的方便,才使我们的算术在一切有用的发明中列在首位;而当我们想到它竟逃过了古代最伟大的两位人物阿基米德和阿波罗尼奥斯的天才思想的关注时,我们更感到这成就的伟大。希腊数学一般指从公元前600年至公元600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非洲北部的数学家们所创造的数学。希腊早期文明中心在雅典;公元前338年希腊诸帮被马其顿控制,文明中心转到亚历山大城(埃及);公元前30年左右,罗马帝国完全控制希腊各国,文明中心转到罗马(意大利)。公元640年前后,阿拉伯民族征服东罗马,希腊文明落下帷幕。古希腊早期的自然科学往往是与哲学交织在一起的,古希腊的自然哲学乃是古代自然科学的一种特殊形态,虽然有许多错误的东西,但也有不少合理的知识和包含着合理成分的猜测.恩格斯说:“在希腊哲学的多种多样的形式中,差不多可以找到以后各种观点的胚胎、萌芽.因此,如果理论自然科学想要追溯自己今天的一般原理发生和发展的历史,它就不得不回到希腊人那里去.”古希腊数学表现出很强的理性精神,追求哲学意义上的真理.在公元前3、4百年的时候,他们的数学思想中就已经涉及到了无限性、连续性等深刻的概念.经过古埃及和巴比伦人长期积累数学知识的萌芽时期以后,古希腊人把数学推进到了一个崭新的时代.古希腊数学不仅有十分辉煌的研究成果,而且提出了数学的基本观点,建立数学理论的方法,给以后的数学发展提供了坚实的基础.等腰三角形两底角相等如果两个三角形有一边及这边上的两个角对应相等,那么这两个三角形全等直角彼此相等两条直线相交时,对顶角相等圆的直径平分圆周毕达哥拉斯学派认为世界万物都是数,最重要的数是1、2、3、4,而10则是理想的数;相应地,自然界由点(一元)、线(二元)、面(三元)和立体(四元)组成。他们认为自然界中的一切都服从于一定的比例数,天体的运动受数学关系的支配,形成天体的和谐。完全数、过剩数(盈数)、不足数(亏数)分别表现为其因数之和等于、大于、小于该数本身(规定因数包括1但不包括该数自身)。他们发现的前几个完全数是6=1+2+3,28=1+2+4+7+14,496。而220和284则是一对亲和数,因为前者的因数和等于284,后者的因数和等于220。后来,在数学中寻找完全数就成为一项任务来研究.在前八千多正整数中只有4个完全数,6、28、496、8128,第五个完全数在1538年才找到:33550336,50年后发现第六个完全数:8589869056.2005年发现第42个梅审素数,从而有了第42个完全数。使几何学从经验上升到理论的关键性贡献应归功于毕达哥拉斯学派。他们基本上建立了所有的直线形理论,包括三角形全等定理、平行线理论、三角形的内角和定理、相似理论等。毕达哥拉斯学派掌握了正多边形和正多面体的一些性质。他们发现,同名正多边形覆盖平面的情况只有三种:正三角形、正方形、正六边形,而且这些正多边形个数之比为6:4:3,边数之比则为3:4:6。毕达哥拉斯学派的另一项几何成就是正多面体作图,他们称正多面体为“宇宙形”。三维空间中仅有五种正多面体:正四面体、正六面体、正八面体、正十二面体、正二十面体。在五种正多面体中,除正十二面体外,每个正多面体的界面都是三角形或正方形,而正十二面体的界面则是正五边形。正五边形作图与著名的“黄金分割”有关。五条对角线中每一条均以特殊的方式被对角线的交点分割。据说毕达哥拉斯学派就是以五角星作为自己学派的标志的。毕达哥拉斯数:一般形式之一:毕达哥拉斯学派的信条是“万物皆数”,这里的数实际上是指正的有理数。传说,毕达哥拉斯学派成员希帕苏斯(Hippasus,公元前470年左右)发现了“不可公度比”的现象,并在一次航海时公布了他的想法,结果被恐慌的毕达哥拉斯学派的其他成员抛进了大海。2221,22,221nnnnn222(,,,xyzxyz两两互素)22222,,,,(,)1,,xabyabzababoabab一奇一偶项武义教授的一项研究认为,希帕苏斯首先发现的是正五边形边长与对角线长不可公度。不可公度比的发现使毕达哥拉斯学派对许多定理的证明都不能成立。例:如果两个三角形的高相同,则它们的面积之比等于两底边之比。100多年后,欧多克斯(Eudoxus,408-355)提出了“新比例论”,才用回避的方法暂时消除了“第一次危机”。新比例定义:设A、B、C、D是任意四个量,其中A和B同类(即均为线段、角或面积),C和D同类,若对任意两个(正)整数m和n,mA与nB的大小关系,取决于mC与nD的大小,则称A:B=C:D。柏拉图(Plato,公元前427-347年)是当时最著名的希腊哲学家之一,虽然他不是数学家,但热心于数学科学,在柏拉图学园的门口挂着牌子:“不懂几何者免进”。值得注意的是,公元前四世纪的重要数学工作几乎都是柏拉图的朋友和学生做的。与柏拉图学园有联系的欧多克斯(Eudoxus,公元前408-355年)是这一时期最大的数学家,他在几何学上的研究成果,后来有些收入了欧几里得的《几何原本》。亚里士多德(Aristotle,公元前384-322年)是柏拉图的学生和同事,相处达20年之久,公元前335年成立了自己的学派,以后曾是马其顿王亚列山大的老师。他是古典希腊时期最伟大的思想家,他的一些思想在数学史上影响很大。亚里士多德不象柏拉图那样只崇尚思辨,而是重视观察、分析和实验性的活动(如解剖)。亚里士多德是古希腊学者中最博学的人,是古代百科全书式的自然科学家,也是对近代自然科学影响最大的古代学者。他的著作甚多,在自然科学方面主要有《物理学》、《论产生和消灭》、《天论》、《气象学》、《动物的历史》、《论动物的结构》等。亚里士多德创立了以三段论为中心的形式逻辑系统。他认为科学需要归纳,由特殊的事例过渡到一般命题,更需要用逻辑的推理由前提演绎出它的推论。亚里士多德的逻辑学著作后来被汇编为《工具论》,对阿基米德、欧几里得等人的研究有重要影响。古典希腊时期的希腊人已经掌握了大量初等几何性质,加上亚里士多德建立了形式逻辑,这些都为形成一门独立的初等几何的理论科学作好了充分的准备。从公元前330年左右到公元前30年左右,希腊数学的中心从雅典转移到了埃及的亚历山大城。亚历山大帝国一分为三后,托勒密帝国统治希腊埃及,其首都亚历山大城成为希腊文化的中心。托勒密一世曾经是亚里士多德的学生,他在执政后修建了缪斯艺术宫,这实际上是一个大博物馆,收藏的图书和手稿据说有50—70万卷。当时的许多著名学者都被请到亚历山大里亚,用国家经费供养着。这一时期思辩猜测已不盛行,观察、计算及定量分析的方法开始流行。天文学家阿利