12017-2018学年天津市南开区七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.163.(3分)下列等式正确的是()A.B.C.D.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.bB.﹣2a+bC.2a+bD.2a﹣b9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()2A.50°B.60°C.70°D.80°10.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°12.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A.120°B.135°C.150°D.不能确定二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.14.(3分)如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.15.(3分)若x、y为实数,且满足|2x+3|+=0,则xy的立方根为.316.(3分)如图,将△ABC沿BC方向平移1个单位得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于.17.(3分)如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.18.(3分)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.三、解答题(本大题共6小题,共46分)19.(8分)计算:(1)|﹣1|﹣|﹣2|+|﹣|(2)20.(6分)如图,直线AB,CD相交于点O,OE平分∠BOC,∠FOD=90°(1)若∠AOF=50°,求∠BOE的度数;(2)若∠BOD:∠BOE=1:4,求∠AOF的度数.21.(8分)如图,在△ABC中,AD平分∠BAC,点P为线段AD上的一个动点,PE⊥AD交BC的延长线于点E.(1)若∠B=35°,∠ACB=85°,求∠E得度数.(2)当点P在线段AD上运动时,设∠B=α,∠ACB=β(β>α),求∠E得大小.(用含α、β的代数式表示)422.(8分)如图,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度数.23.(8分)如图,已知∠1+∠2=180°,∠B=∠3,判断∠C与∠AED的大小关系,并说明理由.24.(8分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD﹣∠ABD=∠∴∠ACD﹣∠ABD=°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD﹣∠A1BD=(∠ACD﹣∠ABD)∴∠A1=°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.52017-2018学年天津市南开区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的平方根是()A.B.﹣C.±D.±【考点】21:平方根.【分析】依据平方根的定义回答即可.【解答】解:∵(±)2=,∴的平方根是±.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.(3分)三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【考点】K6:三角形三边关系.【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.【点评】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.3.(3分)下列等式正确的是()A.B.C.D.【考点】24:立方根;22:算术平方根.【分析】原式各项利用立方根及算术平方根定义计算即可得到结果.【解答】解:A、原式=,错误;B、原式=﹣(﹣)=,错误;C、原式没有意义,错误;D、原式==4,正确,故选:D.【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.4.(3分)实数,0,,3.14159,,,0.1010010001…(相邻两个1之间依次多一个0),其中,无理数有()A.2个B.3个C.4个D.5个【考点】26:无理数;22:算术平方根;24:立方根.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在所列实数中无理数有,,0.1010010001…(相邻两个1之间依次多一个0)这3个数,6故选:B.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.5.(3分)如图,下面说法错误的是()A.∠1与∠C是内错角B.∠2与∠C是同位角C.∠1与∠3是对顶角D.∠1与∠2是邻补角【考点】J6:同位角、内错角、同旁内角;J2:对顶角、邻补角.【分析】依据内错角、同位角、对顶角、邻补角的定义回答即可.【解答】解:A、∠1与∠C是内错角,故A正确,与要求不符;B、∠2与∠C是同旁内角,故B错误,与要求相符;C、∠1与∠3是对顶角,故C正确,与要求不符;D、∠1与∠2是邻补角,故D正确,与要求不符.故选:B.【点评】本题主要考查的是内错角、同位角、对顶角、邻补角的定义,掌握相关定义是解题的关键.6.(3分)下列命题中,真命题的个数是()①如果两条直线都与第三条直线平行,那么这两条直线也互相平行②两条直线被第三条直线所截,同旁内角互补③两直线平行,内错角相等④同一平面内,过一点有且只有一条直线与已知直线垂直⑤从直线外一点到这条直线的垂线段,叫做这点到直线的距离A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行公理、平行线的性质、点到直线的距离的定义判断即可,【解答】解:如果两条直线都与第三条直线平行,那么这两条直线也互相平行,①是真命题;两条平行线被第三条直线所截,同旁内角互补,②是假命题;两直线平行,内错角相等,③是真命题;同一平面内,过一点有且只有一条直线与已知直线垂直,④是真命题;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,⑤数假命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.(3分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠27B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°【考点】J9:平行线的判定.【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、当∠1=∠2时,a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90°,∴a∥b;C、∠1=∠2不等判定a,b互相平行;D、由∠1+∠2=180°可知a∥b;故选:C.【点评】本题主要考查平行线的判定,熟练掌握平行线的判定定理是关键.8.(3分)实数a、b在数轴上对应点的位置如图所示,则化简﹣|a+b|的结果为()A.bB.﹣2a+bC.2a+bD.2a﹣b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴得出a<0,a+b<0,进而化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.【点评】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.9.(3分)如图,现将一块三角板的含有60°角的顶点放在直尺的一边上,若∠1=2∠2,那么∠1的度数为()A.50°B.60°C.70°D.80°【考点】JA:平行线的性质.【分析】先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【解答】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,故选:D.【点评】本题考查了平行线的性质,三角板的知识,熟记性质是解题的关键.810.(3分)如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°【考点】K7:三角形内角和定理.【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,则可求得答案.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:A.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.11.(3分)如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为()A.30°B.150°C.120°D.100°【考点】JA:平行线的性质;J8:平行公理及推论.【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出