计算方法习题集及标准答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

练习一1.什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何?2.试导出计算积分10(1,2,3,4)14nnxIdxnx的递推计算公式111()4nnIIn,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。解:111111110000141()14414414nnnnnnnxxxxxIdxdxxdxdxxxx111()4nnIIn10011ln50.402144Idxx1021324311(1)0.150,(1)0.2134411(1)0.197,(1)0.20144IIIIIIII此算法是数值稳定的。3.试证明nTninixxxxxxR),,(,max211及.)(,max11nnijnjijniaAaAR证明:(1)令1maxriinxx1/1/1/1/111lim()lim[()]lim[()]limnnnpirppppppirrrrppppiiirrxxxxxxxnxxx即rxx又1/1/11lim()lim()nnppppirrppiixxx即rxxrxx⑵设1(,...)0nxxx,不妨设0A,班级学号姓名0114)1(...)(41eIIIIennnnnnn令11maxnijinja1111111maxmaxmaxmaxnnnijjijjiijininininjjjAxaxaxxax即对任意非零nxR,有Axx下面证明存在向量00x,使得00Axx,设01nijja,取向量01(,...)Tnxxx。其中0()(1,2,...,)jijxsignajn。显然01x且0Ax任意分量为0011nnijjijiiaxa,故有0011maxnnijjijiijAxaxa即证。4.已知6134A,1A___________,2A_______________。5.已知矩阵321230103A,试计算A的谱半径()A。解:2321()det()230(3)(64)0103AfIAmax35()35.A6.已知210121012A,试计算1||||A,||||A,||||FA,2||||A311311||||max||5ijjiAa解:()3131||||max||5ijijAa1332211||||(||)4FijijAa2||||()3TAAA7.11471236,0,_________;________.0811AXAAX则8.古代数学家祖冲之曾以113355作为圆周率的近似值,问此近似值具有多少位有效数字?解:13250.31415929210133x6173550.266100.510113xx该近似值具有7为有效数字。9.若T(h)逼近其精确值T的截断误差为12)(:)(iiihAThTTR其中,系数iA与h无关。试证明由,2,1,14)()2(4)()()(110mhThThTmhThTmmmm所定义的T的逼近序列)}({hTm的误差为122)()(immimhAThT,其中诸)(miA是与h无关的常数。证明:当m=0时20i1ThT=iih左边()-右边设m=k时等式成立,即()22ki1ThT=kkiih()-当m=k+1时1()22()221111114[()][()]4()()22ThT==4141kkkikkikiikkiikkkhhTThTThTT()-()2(1)21()kkiiih即证。练习二1.试构造迭代收敛的公式求解下列方程:班级学号姓名(1)4sincosxxx;(2)xx24。解:(1)迭代公式1cossincossin,()44kkkxxxxxx,'()1x公式收敛k0123kx00.250.250980.25098*0.25098x(2)ln(4)()ln2xx,01.5x,'0()1x局部收敛1ln(4)ln2kkxxk012345678910kx1.51.3221.4211.3671.3971.3801.3901.3841.3871.3861.386*1.386x2.方程0123xx在5.1x附近有根,把方程写成三种不同的等价形式:(1)211xx,对应迭代公式2111kkxx;(2)231xx,对应迭代公式3211kkxx;(3)112xx,对应迭代公式111kkxx。判断以上三种迭代公式在5.10x的收敛性,选一种收敛公式求出5.10x附近的根到4位有效数字。解:(1)21()1xx'32()xx'0()1x局部收敛(2)2()1xx2'232()(1)3xxx'0()1x局部收敛(3)1()1xx2'31()(1)2xx'0()1x不是局部收敛迭代公式(1):0123456781.51.444441.479291.4569761.471081.462091.467791.44161.466479101112131415161.46501.465931.46531.465721.465481.465631.4655341.465595*1.466x迭代公式(2):k0123456kx1.51.4811.4731.4691.4671.4661.466*1.466x3.已知)(xx在[a,b]内有一根*x,)(x在[a,b]上一阶可微,且13)(],,[xbax,试构造一个局部收敛于*x的迭代公式。解:方程()xx等价于0.5[()3]xxx构造迭代公式10.5[()3]kkkxxx令()0.5[()3]xxx由于()x在[a,b]上也一阶可微'[0.5(()3)]0.5()30.51xxx故上述迭代公式是有局部收敛性.4.设)(x在方程)(xx根*x的邻近有连续的一阶导数,且1)(*x,证明迭代公式)(1kkxx具有局部收敛性。证明:()x在*x邻近有连续一阶导数,则'()x在*x附近连续,令'*()1xL则取1L则*0xx当时有''*()()xx从而'''*'*()()()()(1)1xxxxLL**'**()()()()()xxxxxxxx故**xx(x)令*ax,*bx由定理2.1知,迭代公式1()kkxx是有局部收敛性。5.)5()(2xxx,要使迭代法)(1kkxx局部收敛到5*x,则的取值范围是______________。6.用牛顿法求方程0742)(23xxxxf在[3,4]中的根的近似值(精确到小数点后两位)。解:32()247fxxxx'2()344fxxxy次迭代公式3212247344kkkkkkkxxxxxxxk0123kx3.53.643.633.63*3.63x7.试证用牛顿法求方程0)3()2(2xx在[1,3]内的根2*x是线性收敛的。解:令2()(2)(3)fxxx'2()328(2)(34)fxxxxxy次迭代公式1(2)(3)34kkkkkxxxxx故*11(2)(3)(2)(21)23434kkkkkkkkkxxxxexxxxx*2kkkexxx从而12134kkkkexex,k时,2kx故k,112kkee故牛顿迭代公式是线性收敛的8.应用牛顿法于方程03ax,导出求立方根3a的迭代公式,并讨论其收敛性。解:3()fxxa'2()3fxx相应的牛顿迭代公式为33122233kkkkkxaxaxxxx迭代函数322()3kkxaxx,3'322()3xaxx,''4()2xax则'3()0a,''3()0a练习三1.设有方程组3103220241225321321321xxxxxxxxx(1)考察用Jacobi法,Gauss-Seidal法解此方程组的收敛性;(2)用Jacobi法及Gauss-Seidal法解方程组,要求当4)()1(10kkxx时迭代终止。解:(1)5211442310AA是强对角占优阵。故用雅克比法及高斯-塞德尔法解此方程均收敛。(2)2112123555xxx11213425xxx31313510310xxx雅克比法:3(1)()()321255125kkkxxx,3(1)()()1121425kkkxxx,2(1)()()3131510310kkkxxx,取初始向量(0)(0)(0)1230xxx,迭代18次有18174i10ixx(i=1,2,3)13.999996x,22.999974x,32.000000x高斯-塞德尔法:3(1)()()321255125kkkxxx,3(1)()()1121425kkkxxx,2(1)()()3131510310kkkxxx取初始向量(0)(0)(0)1230xxx,迭代8次有874i10ixx(i=1,2,3)14.000033x,22.999983x,32.000002x2.设有方程组22221211212111bxaxabxaxa,)0,(1211aa,迭代公式:)(1)(1)1(221222)(2)1(212111)(1kkkkxabaxxabax,,2,1k.求证由上述迭代公式产生的向量序列)(kx收敛的充要条件是122112112aaaa.班级学号姓名证明:迭代公式(1)()kkxBxf中的矩阵1211212200aaBaa,212211122det()aaEBaa,由迭代收敛的充要条件知12211122()11aaBaa即证。3.给定方程组1011010201321xxxaa,确定a的取值范围,使方程组对应的Jacobi迭代收敛。4.用SOR方法解下列方程组(取松驰因子2.1),要求4)()1(10kkxx.54122121xxxx.解:SOR方法12(1)()()()111111211()kkkkxxbaxaxa12(1)()(1)()222212222()kkkkxxbaxaxa11122122122,1,1,4,1,5,1.2aaaabb故2(1)()()110.20.60.6kkkxxx,1(1)()(1)220.20.31.5kkkxxx迭代初值(0)(0)120xxk()1kx()2kx00.0000000.00000010.6000000-1.32000021.2720000-0

1 / 33
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功