锐角三角函数-公开课课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

24.3锐角三角函数第1课时锐角三角函数第24章解直角三角形导入新课讲授新课当堂练习课堂小结1.理解锐角三角函数的定义;(重点)2.掌握三角函数之间的关系并会计算.(难点)学习目标1.在Rt△ABC中,∠C=90°,AB=10,BC=6,AC=______.2.在Rt△ABC中,∠C=90°,∠A=30°,AB=10cm,则BC=,理由是.导入新课回顾与思考8530°所对直角边是斜边的一半任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么与有什么关系.能解释一下吗?ABBC''''BACBABCA'B'C'讲授新课锐角三角函数定义及三角函数之间的关系在图中,由于∠C=∠C'=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C'BCABB'C'A'B'''''BACBABBC这就是说,在直角三角形中,当锐角∠A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边与斜边的比叫做∠A的正弦(sine),记作sinA即caAA斜边的对边sin例如,当∠A=30°时,我们有2130sinsinA当∠A=45°时,我们有2245sinsinAABCcab对边斜边在图中∠A的对边记作a∠B的对边记作b∠C的对边记作c引出定义:如图,在Rt△ABC中,∠C=90°,当锐角∠A确定时,∠A的对边与斜边的比就随之确定,此时,其他边之间的比是否也确定了呢?为什么?B对边aAC邻边b斜边c探究归纳任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠B=∠B'=α,那么与有什么关系.能解释一下吗?ABCA'B'C'ABACA'C'A'B'在图中,由于∠C=∠C'=90°,∠B=∠B'=α,所以Rt△ABC∽Rt△A'B'C'''''BAABCBBC''''BACBABBC这就是说,在直角三角形中,当锐角∠B的度数一定时,不管三角形的大小如何,∠B的对边与斜边的比也是一个固定值.当锐角∠B的大小确定时,∠B的邻边与斜边的比也是固定的,我们把∠B的邻边与斜边的比叫做∠B的余弦(cosine),记作cosB,即cosBaBc的邻边斜边引出定义:归纳1.sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).2.sinA、cosA是一个比值(数值).3.sinA、cosA的大小只与∠A的大小有关,而与直角三角形的边长无关.如图:在Rt△ABC中,∠C=90°,正弦余弦sinAaAc的对边=斜边cosAbAc的邻边=斜边1cossin222222222cccbacbcaAA当直角三角形的一个锐角的大小确定时,其对边与邻边比值也是唯一确定的吗?探究归纳在直角三角形中,当锐角∠A的度数一定时,不管三角形的大小如何,∠A的对边与邻边的比是一个固定值.BCB′C′A′C′AC=所以如图,Rt△ABC和Rt△A′B′C′,∠C=∠C′=90°,∠A=∠A′=α,问:有什么关系?由于∠C=∠C′=90°,∠A=∠A′=α,所以Rt△ABC∽Rt△A′B′C′ACBCA′C′B′C′与即ACBCA′C′B′C′=如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA.一个角的正切表示定值、比值、正值.baAAA的邻边的对边tan,,.AaBbCc的对边记作的对边记作的对边记作归纳ABC┌思考:锐角∠A的正切值可以等于1吗?为什么?可以大于1吗?对于锐角∠A的每一个确定的值,tanA都有唯一的确定的值与它对应.解:可以等于1,此时为等腰直角三角形;可以大于1.延伸1.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,图中sinB可由哪两条线段比求得.DCBA解:在Rt△ABC中,sinACBAB在Rt△BCD中,sinCDBBC因为∠B=∠ACD,所以sinsinADBACDAC求一个角的正弦值,除了用定义直接求外,还可以转化为求和它相等角的正弦值.当堂练习2.如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,求sinA、cosA、tanA的值.解:∵ABBCAsin63sin105BCAAB又86102222BCABAC,54cosABACA3tan4BCAACABC6103.如图,在Rt△ABC中,∠C=90°,cosA=,求sinA、tanA的值.1517解:∵15cos17ACAAB88sin,1717BCkAABk88tan1515BCkAACkABC设AC=15k,则AB=17k所以2222(17)(15)8BCABACkkk4.下图中∠ACB=90°,CD⊥AB,垂足为D.完成下列填空.ABCD(1)tanA==AC()CD()(2)tanB==BC()CD()BCADBDAC5.如图,在Rt△ABC中,∠C=90°,AC=8,tanA=,求:sinA、cosB的值.43ABC8解:3tan4BCAAC8AC338644BCAC63sin105BCAAB22228610ABACBC63cos105BCBAB在Rt△ABC中=ab的邻边的对边AAtanA=课堂小结sinAaAc的对边=斜边cosAbAc的邻边=斜边定义中应该注意的几个问题:1.sinA、cosA、tanA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).2.sinA、cosA、tanA是一个比值(数值).3.sinA、cosA、tanA的大小只与∠A的大小有关,而与直角三角形的边长无关.

1 / 21
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功