2015-2016学年山西省吕梁市孝义市七年级(下)第三次月考数学试卷一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a﹣b<0B.<C.1﹣a<1﹣bD.﹣1+a<﹣1+b2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(﹣a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,﹣m)在第四象限内.A.1B.2C.3D.43.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个B.3个C.4个D.5个4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>15.立方根等于它本身的有()A.﹣1,0,1B.0,1C.0,﹣1D.16.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空.若旅行团的人数为偶数,求旅行团共有多少人()A.27B.28C.29D.307.点到直线的距离是指这点到这条直线的()A.垂线段B.垂线C.垂线的长度D.垂线段的长度8.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为()A.14B.13C.12D.119.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组()A.B.C.D.10.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、认真填一填(每题3分,共24分)11.的平方根为.12.关于x的不等式2x﹣a≤﹣3的解集如图所示,则a的值是.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.14.若不等式组的解集是空集,则a、b的大小关系是.15.写出一个解是的二元一次方程组:.16.如果一个数的平方根是a+6和2a﹣15,则这个数为.17.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a﹣1,a+1),另一点B的坐标为(a+3,a﹣5),则点B的坐标是.18.已知方程组,当m时,x+y>0.三、耐心做一做(共66分)19.计算:+﹣.20.解方程组:①②.21.求不等式的非正整数解:.22.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:AC∥DF.将过程补充完整.解:∵∠1=∠2()∠1=∠3()∴∠2=∠3()∴∥()∴∠C=∠ABD()又∵∠C=∠D()∴∠D=∠ABD()∴AC∥DF()23.m为何值时,方程组的解互为相反数?24.某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?25.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.26.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型B型价格(万元/台)ab处理污水量(吨/月)240180(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.2015-2016学年山西省吕梁市孝义市七年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a﹣b<0B.<C.1﹣a<1﹣bD.﹣1+a<﹣1+b【考点】不等式的性质.【分析】根据不等式的性质,分别对每一项进行分析即可得出答案.【解答】解:A、∵a>b,∴a﹣b>0,故本选项错误;B、∵a>b,∴>,故本选项错误;C、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,故本选项正确;D、∵a>b,∴﹣1+a>﹣1+b,故本选项错误;故选C.2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(﹣a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,﹣m)在第四象限内.A.1B.2C.3D.4【考点】点的坐标.【分析】根据坐标平面内的点以及象限内,坐标轴上点的特点找到正确命题的个数即可.【解答】解:①坐标平面内的点可以用有序数对来表示,原说法正确;②若a>0,b不大于0,那么b可能为负数或0,P(﹣a,b)在第三象限或坐标轴上,原说法错误;③在x轴上的点,其纵坐标都为0,原说法正确;④当m≠0时,m2>0,﹣m可能为正,也可能为负,所以点P(m2,﹣m)在第四象限或第一象限,原说法错误;正确的有2个,故选B.3.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个B.3个C.4个D.5个【考点】平行线的性质.【分析】根据对顶角相等得出∠CGF=∠AGE,根据角平分线定义得出∠CAB=∠DAC,根据平行线性质得出∠CGF=∠CAB=∠DCA,∠DAC=∠ACB,即可得出答案.【解答】解:根据对顶角相等得出∠CGF=∠AGE,∵AC平分∠BAD,∴∠CAB=∠DAC,∵AB∥CD∥EF,BC∥AD,∴∠CGF=∠CAB=∠DCA,∠DAC=∠ACB,∴与∠AGE相等的角有∠CGF、∠CAB、∠DAC、∠ABAC,∠DCA,共5个.故选D.4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1B.a<1C.a>﹣1D.a>1【考点】解一元一次不等式.【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.5.立方根等于它本身的有()A.﹣1,0,1B.0,1C.0,﹣1D.1【考点】立方根.【分析】根据开立方的意义,可得答案.【解答】解:立方根等于它本身的有﹣1,0,1.故选:A.6.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空.若旅行团的人数为偶数,求旅行团共有多少人()A.27B.28C.29D.30【考点】一元一次不等式组的应用.【分析】设旅行团共有x人,根据“当每个房间只住3人时,有一个房间住宿情况是不满也不空”列出不等式组0<x﹣3×9<3,解得27<x<30,再由x为偶数,即可确定旅行团共有的人数.【解答】解:设旅行团共有x人,由题意,得0<x﹣3×9<3,解得27<x<30,∵x为偶数,∴x=28.即旅行团共有28人.故选B.7.点到直线的距离是指这点到这条直线的()A.垂线段B.垂线C.垂线的长度D.垂线段的长度【考点】点到直线的距离.【分析】从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.对照定义进行判断.【解答】解:根据定义,点到直线的距离是指这点到这条直线的垂线段的长度.故选D.8.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为()A.14B.13C.12D.11【考点】一元一次不等式的应用.【分析】本题可设钢笔数为x,则笔记本有30﹣x件,根据小明用100元钱购得笔记本和钢笔共30件,就是已知不等关系:买笔记本用的钱数+买钢笔用的钱数≤100元.根据这个不等关系就可以得到一个不等式.求出钢笔数的范围.【解答】解:设钢笔数为x,则笔记本有30﹣x件,则有:2(30﹣x)+5x≤10060﹣2x+5x≤100即3x≤40x≤13因此小明最多能买13只钢笔.故选B.9.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据捐款学生42名,捐款金额是320元,即可得出方程组.【解答】解:设捐款6元的有x名同学,捐款8元的有y名同学,由题意得,,即.故选B.10.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】分a﹣1>0和a﹣1<0两种情况讨论,即可得到a的取值范围,进而求出M所在的象限.【解答】解:当a﹣1>0时,a>1,点M可能在第一象限;当a﹣1<0时,a<1,点M在第三象限或第四象限;所以点M不可能在第二象限.故选B.二、认真填一填(每题3分,共24分)11.的平方根为±3.【考点】平方根.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.12.关于x的不等式2x﹣a≤﹣3的解集如图所示,则a的值是1.【考点】在数轴上表示不等式的解集.【分析】首先用a表示出不等式的解集,然后解出a.【解答】解:∵2x﹣a≤﹣3,∴x,∵x≤﹣1,∴a=1.故答案为:1.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于115°.【考点】翻折变换(折叠问题).【分析】根据折叠的性质,得∠BFE=,再根据平行线的性质即可求得∠AEF的度数.【解答】解:根据长方形ABCD沿EF对折,若∠1=50°,得∠BFE==65°.∵AD∥BC,∴∠AEF=115°.14.若不等式组的解集是空集,则a、b的大小关系是b≥a.【考点】不等式的解集.【分析】根据大大小小无解进行解答即可.【解答】解:∵不等式组的解集是无解,∴b≥a,故答案为:b≥a.15.写出一个解是的二元一次方程组:.【考点】二元一次方程组的解.【分析】根据1+(﹣2)=﹣1,1﹣(﹣2)=3列出方程组即可.【解答】解:根据题意得:.故答案为:16.如果一个数的平方根是a+6和2a﹣15,则这个数为81.【考点】平方根.【分析】根据两个平方根互为相反数,即可列方程得到a的值,然后根据平方根的定义求得这个数.【解答】解:根据题意得:a+6+(2a﹣15)=0,解得:a=3.则这个数是(a+6)2=(3+6)2=81.故答案是:81.17.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a﹣1,a+1),另一点B的坐标为(a+3,a﹣5),则点B的坐标是(4,﹣4).【考点】点的坐标.【分析】点在y轴上,则其横坐标是0.【解答】解:∵点A(a﹣1,a+1)是y轴上一点,∴a﹣1=0,解得a=1,∴a+3=1+3=4,a﹣5=1﹣5=﹣4,∴点B的坐标是(4,﹣4).故答案填:(4,﹣4).18.已知方程组,当m>﹣2时,x+y>0.【考点】二元一次方程组的解.【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.【解答】解:,②×2﹣①得:x=﹣3③,将③代入②得:y=m+5,所以原方程组的解为,∵x+y>0,∴﹣3+m+5>0,解得m>﹣2,∴当m>﹣2时,x+y>0.故答案为>﹣2.三、耐心做一做(共66分)19.计算:+﹣.【考点】实数的运算.【分析】原式利用平方根及立方根定义化简,计算即可得到结果.【解答】解:原式=8﹣﹣7=﹣.20.解方程组:①②.【考点】解二元一次方程组.【分析】①方程组利用代入消元法求出解即可;②方程组利用加减消元法求出解即可.【解答】解:①把方程①代入②得:2﹣2y+4y=6,解得:y=2,把y=2代入①得:x=﹣1,则方程组的解为;②方程①×5﹣②×3得:﹣11x=55,即x=﹣5,把x=﹣5代入①得:y=﹣6,则方程组的解为.21.求不等